1.A. V. Murthy, “ Vibrations of short beams ”, American Institute of Aeronautics and Astronautics Journal, Vol. 8, pp. 34-38, 1970.
2.A. Tesslor and S. B. Dong , “On a hierarchy of conforming Timoshenko beam elements”, Computer and Structures, Vol. 14, pp. 335-344, 1981.
3.Anil K. Chopa, Dynamics of structures Theory And Applications To Earthquake Engineering, 2nd Edition,2001.
4.D. L. Thomas, J. M. Wilson and R. R. Wilson, “ Timoshenko beam finite elements “, Journal of Sound and Vibration, Vol. 31(3), pp.315-330, 1973.
5.G. R. Cowper, “ The shear coefficient in Timoshenko’s beam theory ”, ASME, Journal of Applied Mechanics, Vol. 33, pp.335-340, 1966.
6.J.G. and L.E. Goodman,”Natural frequencies of continuous beams of uniform span length”,Journal of Applied Mechanics,Vol. 18,pp. 217-218,1951.
7.J.N. Goodier,” On the problems of the beam and plate in the theory of elasticity”,Transactions of the Royal Society of Canada,Vol. 32,pp. 65-88,1938.
8.J. Thomas and B. A. H. Abbas, “ Finite element model for dynamic analysis of Timoshenko beam ”, Journal of Sound and Vibration, Vol.41(3), pp. 291-299, 1975.
9.J. N. Reddy, An Introduction To The Finite Element Method, 3rd Edition McGRAW-Hill, 2006.
10.J. N. Reddy ,”On Locking-Free Shear Deformable Beam Finite Elements”, Computer Methods In Applied Mechanics and Engineering, Vol. 149 , pp. 113 -132,1997.
11.K. K. Kapur, “ Vibration of a Timoshenko beam using a finite element approach ”, Journal of the Acoustical Society of America , Vol. 40, pp. 1058-1063, 1966.
12.L.E. Goodman,”Flexural vibration in uniform beams according to the Timoshenko theory”,Journal of Applied Mechanics,Vol. 21,pp. 202-204,1954.
13.N. G. Stephen and M. Levinson, “ A second order beam theory ”,Journal of Sound and Vibration, Vol. 67(3), pp. 293-305, 1979.
14.R. E. Nickell and G. A. Secor, “Convergence of consistently derived Timoshenko beam finite elements”, International Journal for Numerical Method in Engineering, Vol. 5, pp. 243-245, 1972.
15.S.P. Timoshenko,”On the correction for shear of the differential equation for transverse vibrations of prismatic bars”, Philosophical Magazines ,Vol. 41 ,744 -746,1921.
16.S.P. Timoshenko,”On the transverse vibration of bar of uniform cross-section”, Philosophical Magazines,Vol. 43,pp. 125-131,1922.
17.S. B. Dong and J. A. Wolf, “Effect of transverse shear deformation on vibrations of planar structures composed of beam-type elements”, Journal of the Acoustical Society of America, Vol. 53, pp. 120-127, 1973.
18.Shih, C., Wang, Y. K., Ting, E. C., “Fundamentals of a vector form intrinsic finite element: Part III. Convected material frame and examples,” Journal of Mechanics, Vol. 20, No. 2, pp. 133-143, (2004).
19.S. Reaz Ahmed, A. B. M. Idris and Md. Wahhaj Uddin, ”Numerical solution of both ends fixed deep beams”, Computers and Structures, Vol. 61,No 1 ,pp. 21-29, 1996.
20.T. J. R. Hughes ,R. L. Taylor and W. Kanoknukulchoii, “A simple and efficient plate element for bending”, International Journal for Numerical Method in Engineering, Vol. 11 ,pp. 1529-1943, 1977.
21.Ting, E. C., Shih, C., Wang, Y. K., “Fundamentals of a vector form intrinsic finite element: Part I. basic procedure and a plane frame element,” Journal of Mechanics, Vol. 20, No. 2, pp. 113-122, (2004a).
22.Ting, E. C., Shih, C., Wang, Y. K., “Fundamentals of a vector form intrinsic finite element: Part II. plane solid elements,” Journal of Mechanics, Vol. 20, No. 2, pp. 123-132, (2004b).
23.W. Carnegie, J. Thomas and E. Dokumuci, “ An improved method of matrix displacement analysis in vibration problems ”, Aeronaut. Quart. , Vol. 20, pp. 321-332, 1969.
24.王仁佐,”向量式結構運動分析”,國立中央大學土木工程系博士論文,2005。25.曾國瑋,”向量式有限元於剛架式海域結構物之動力分析”,國立中山大學海洋環境及工程學系碩士論文,2007。26.丁承先、王仲宇、吳東岳、王仁佐、莊清鏘,”運動解析與向量式有限元”,2007。