(35.175.212.130) 您好!臺灣時間:2021/05/18 04:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蕭丞祺
研究生(外文):Cheng-chi Hsiao
論文名稱:綠藻製程廢水以生物濾床處理及回收利用
論文名稱(外文):A research on the treatment and recycling of the wastewater from Chlorella production using biofiltration
指導教授:于嘉順
指導教授(外文):jason, C. S. Yu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋環境及工程學系研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:88
中文關鍵詞:養殖廢水垂直流生物濾床沸石發泡煉石營養鹽
外文關鍵詞:NutrientZeoliteLECAVertical-flow biofilterAquaculture wastewater
相關次數:
  • 被引用被引用:4
  • 點閱點閱:659
  • 評分評分:
  • 下載下載:177
  • 收藏至我的研究室書目清單書目收藏:0
  近年來因人口成長、產業活動快速,加上低效率的農業策略,水資源需求量大增,因而造成水資源的危機,故水資源回收再利用已成為產業界之重要課題。而垂直流生物濾床擁有便宜、低維修頻率,且佔地面積小,對於水力及有機負荷擁有較大耐受度等優點,常被運用於養殖廢水再利用之過濾階段。
  有鑑於此,本研究為因應綠藻製程廢水之水資源回收再利用,希望降低廢水中之有機體含量,將其轉換為無機營養鹽,增加回收廢水之附加價值,故本研究分為兩個部分進行試驗,第一為綠藻製程廢水回收初步研究,此階段進行綠藻活性測試、綠藻偏好之氮源類型試驗、溫度試驗、好厭氧消化速率試驗,將找出綠藻無法適應之環境條件使其失去活性,結果顯示氨氮為綠藻所偏好利用之氮源,而在活性測試部分發現,只需避免藻體接受光照,則可使藻類失去活性,在好厭氧消化部分則為好氧消化效果較佳。第二為活性污泥及生物濾床處理效果之研究,結果指出以曝氣方式採用好氧消化之活性污泥法中,當每天所添加體積負荷達到總體積之20%,硝酸鹽及磷酸鹽雖有累積,但系統上層液之SS、COD及Chl-a濃度持續上升,顯示系統已無法承受負載。而生物濾床處理結果中,以沸石及發泡煉石為濾材,當水力負荷介於0.30~2.09 m3 m-2 day-1下,系統之SS、COD、Chl-a去除率皆可達到90%以上,而總無機氮及正磷之存留率分別為96%及76%以上。
The crisis of the water resources become a serious problem in recent years. Besides the global warming the problem mostly comes from quick population growth, intense industrial developments and low efficiency agricultural implementations. Biofilters are widely been used to either reduce pollution loads or also as a water conservation tool. And the vertical-flow biofilters act as a kind of bio-filter has gain the advantages of low maintenance, small footprint, greater capacities on both the hydraulic and organic loadings. It often used in to treat aquaculture wastewater for recycling during the filter stage.
This study is, therefore, focusing on the bio-treatment processes to recycle the wastewater discharged from Chlorella production. Preserving water resources is one big issue of this study, Reuse the nutrients is another tough objective. For reusing the water with as much nutrients as possible and get the organic content off the water is the major target of the study.
This study has been separated in two stages. A preliminary study has first been carried out in order to understand the Chlorella behaviors in more detail. Second phase includes the treatment tests with conventional activated sludge (AS) method and the bio-filters.
The results have shown that ammonia is preferred by Chlorella as the nitrogen source. Light plays an important role on the treatment for removing algae activities. Aerobic digestion has shown better efficiency. AS can accept as high as 20% of daily input to the system volume, the system is not capable to bear more. While the biofilters, using either zeolite and LECA as the media, have shown satisfied results. When the hydraulic loading stay between 0.30 ~ 2.09 m3 m-2 day-1 to the system, the SS, COD, Chl-a removal rates can reach 90%, and more than 96% of total inorganic nitrogen (TIN) and 76% phosphorus can be preserved in the recycled water, respectively.
摘要.....................................................................................I
Abstract..............................................................................II
目錄...................................................................................IV
圖目錄...............................................................................VI
表目錄...............................................................................IX
第一章 前言...............................................................1
1.1 研究動機.......................................................1
1.2 研究目的.......................................................2
第二章 文獻回顧.......................................................3
2.1 微藻...............................................................3
2.1.1 微藻及品種介紹...........................................3
2.1.2 光合作用.......................................................4
2.1.3 綠藻的型態特徵與生長條件.......................5
2.1.4 微生物生長趨勢...........................................9
2.2 活性污泥.....................................................11
2.2.1 污泥消化基本原理.....................................11
2.2.2 活性污泥的性質與生物相.........................12
2.2.3 活性污泥法.................................................13
2.3 生物濾床.....................................................15
2.3.1 病源體.........................................................17
2.3.2 有機物.........................................................17
2.3.3 氮.................................................................17
第三章 實驗設計與結果討論.................................21
3.1 現場採樣規劃與實驗分析項目.................21
3.2 分析方法.....................................................22
3.3 綠藻製程廢水回收初步研究.....................24
3.3.1 綠藻活性試驗—光暗瓶法.........................24
3.3.2 綠藻偏好之氮源類型試驗.........................25
3.3.3 溫度試驗.....................................................25
3.3.4 好厭氧消化速率試驗.................................26
3.4 活性污泥法.................................................27
3.5 生物濾床試驗.............................................28
3.5.1 系統配置與採樣.........................................28
3.5.2 濾料與管柱特性.........................................29
3.6 結果分析.....................................................33
3.6.1 廢水回收初步研究.....................................33
3.6.2 活性污泥法.................................................38
3.6.3 生物濾床試驗.............................................41
第四章 結論與建議.................................................63
4.1 結論.............................................................63
4.2 建議.............................................................64
參考文獻..........................................................................65
附錄..................................................................................72
Arheimer, B., Torstensson, G., Wittgren, H.B., 2004. Landscape planning to reduce eutrophication: agricultural practices and constructed wetlands. Landscape and urban planning, 64, 205-215.

Boller, M., Schwager, A., Eugster, J., Mottier, V., 1993. Dynamic behaviour of intermittent buried filters. Wat. Sci. Tech., 28(10), 99-107.

Brix, H., Schierup, H.H., 1990. Soil oxygenation in constructed reed beds: the role of macrophyte and soil-atmosphere interface oxygen transport. in: P.F. Cooper and B.C. Findlater (Eds.) Constructed Wetlands in Water Pollution Control. Pergamon Press, Oxford, UK, pp. 53-66.

Dong, Q.L., Zhao, X.M., 2004. In situ carbon dioxide fixation in the process of natural astaxanthin production by a mixed culture of Haematococcus pluvialis and Phaffia rhodozyma. Catalysis Today, 98(4), 537-544.

Drizo, A., Frost, C.A., Grace, J., Smith, K.A., 1999. Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems. Wat. Res., 33(17), 3595-3602.

Grant, W.D., Long, P.E., 1985. Environmental microbiology. in: O. Hutzinger (Ed.) The Handbook of Environmental Chemistry. Vol. I, Part D, The Natural Environment and Biochemical Cycles. Springer-Verlag, Berlin, Germany, pp. 125-237.

Guilloteau, J.A., 1992. Traitement des eaux residuaires par infiltration-percolation. These pour obtenir le grade de docteur l’universite Louis Pasteur, Academie de Strasbourg.

Hagopian, D.S., Riley, J.G., 1998. A closer look at the bacteriology of nitrification. Aquac. Eng., 18, 223-244.

Hammer, D.A., Bastian, R.K., 1989. Wetlands ecosystems: Natural water purifiers? Constructed Wetlands for Wastewater Treatment: Municipal, Industrical and Agricultural. 5-19.

Johansson, L., 1997. The use of LECA for the removal of phosphorus from wastewater. Wat. Sci. Tech., 35(5), 87-93.

Kadlec, R.H., Knight, R.L., 1996. Treatment Wetlands. Lewis Publishers, Boca Raton.

Knowles, R., 1982. Denitrification. Microbiol. Rev., 46, 43-70.

Lee, J.H.W., Huang, Y., Dickman, M., Jayawardena, A.W., 2003. Neural network modeling of coastal algal blooms. Ecological Modelling, 159, 179-201.

Lekang, O.I., Kleppe, H., 2000. Efficiency of nitrification in trickling filters using different filter media. Aquaculture Engineering, 21, 181-199.

Levitt, J., 1980. Responses of Plants to Environmental Stresses. Vol. I, Vol. II. Academic Press. N. Y.

Lin, L.P., 2005. Chlorella - Its Ecologym, Structure, Cultivation, Bioprocess and Application. Yi Hsien Publishing Co., Ltd.

Merchuk, J.C., Ronen, M., Giris, S., Arad, S.M., 1998. Light/dark cycles in the growth of the red microalga Porphyridium sp. Biotechnology and Bioengineering, 59(6), 705-713.

Morris, M.C., 1999. The effects of substrate particle size, depth and vegetation on ammonia removal in a vertical flow constructed wetland. in: J. Vymazal (Ed.) Nutrient Cycling and Retention in Natural and Constructed Wetlands. Backhuys Publishers, Leiden, The Netherlands, pp. 31-40.

Muir, J.F., Roberts, J.R., 1982. Recent Advances in Aquaculture. Westview, Boulder.

Ozone Technology, Inc., 2007. Ozonation and Biofiltration for Water Purification: How ozonation and biofiltration can be used together to dependably and cost-effectively purify water.

Platzer, C., Mauch, K., 1997. Soil clogging in vertical flow reed beds- mechanisms, parameters, consequences and ....... solutions? Wat. Sci. Tech., 35(5), 315-322.

Patrick, W.H., Jr., Wyatt, R., 1964. Soil nitrogen loss as a result of alternate submergence and drying. Soil Sci. Soc. Am. Proc., 28, 647-652.

Reddy, K.R., Khaleel, R., Overcash, M.R., Westerman, P.W., 1979. A nonpoint source model for land areas receiving animal wastes. I. Mineralization of organic nitrogen. Trans. ASAE, 22, 863-876.

Reddy, K.R., Patrick, W.H., Jr., 1984. Nitrogen transformations and loss in flooded soils and sediments. CRC Crit. Rev. Environ. Control, 13, 273-309.

Seizinger, S., 1988. Denitrification in freshwater and coastal ecosystems: ecological and geochemical significance. Limmol. Oceanogr., 33, 702-724.
Skjølstrup, J., Nielsen, P.H., Frier, J.O., Mclean, E., 1997. Biofilters in
recirculating aquaculture systems - state of the art. Scand. Assoc.
Agric. Sci. Semin. 258, 33–42.
Tchobanoglous, G., 1993. Constructed wetlands and aquatic plant systems:
research, design, operational, and monitoring issues. in: G.A. Moshiri
(Ed.) Constructed Wetlands for Water Quality Improvement. Lewis
Publishers/CRC Press, Boca Raton, Florida, pp. 29-35.
Van Rijn, J., 1996. The potential for integrated biological treatment systems
in recirculating fish culture - A review. Aquaculture, 3–4, 181–210.
von Felde, K., Kunst, S., 1997. N- and COD-removal in vertical-flow
systems. Wat. Sci. Tech., 35(5), 79-85.
Vymazal, J., 1995. Algae and Element Cycling in Wetlands. CRC
Press/Lewis Publishers, Boca Raton, Florida, USA.
Vymazal, J., 1999. Nitrogen removal in constructed wetlands with horizontal
sub-surface flow - can we determine the key process? in: J. Vymazal
(Ed.) Nutrient Cycling and Retention in Natural and Constructed
Wetlands. Backhuys Publishers, Leiden, The Netherlands, pp. 1-17.
Watson, J.T., Danzig, A.J., 1993. Pilot-scale nitrification studies using
vertical-flow and shallow horizontal-flow constructed wetland cells. In:
G.A. Moshiri (Ed.) Constructed Wetlands for Water Quality
Improvement. Lewis Publishers/CRC Press, Boca Raton, Florida, pp.301-313.
Watson, J.T., Reed, S.C., Kadlec, R.H., Knight, R.L., Whitehouse, A.E.,
1989. Performance expectations and loading rates for constructed
wetlands. in: D.A. Hammer (Ed.) Constructed Wetlands for Wastewater
Treatment: Municipal, Industrical and Agricultural. Lewis Publishers,
Chelsea, Michigan, USA, pp. 319-351.
中華民國環境工程學會, 1999. 環境微生物. 中華民國環境工程學會.
石濤, 1999. 環境微生物. 鼎茂出版社.
朱德民, 1990. 植物與環境逆境. 國立編譯館.
江善宗, 殷儷容, 2006. 藻類研發專題─纖維素水解酵素於綠藻工業之應
用研究. 農業生技產業季刊, 7, 26-36.
李攸萍, 洪良銘, 廖碩秋, 賴雨潺, 2006. 以碳酸氫鈉為碳源於鹼液環境
批次培養擬球藻(A). 學生專題報告, 大葉大學環境工程學系.
李黃允, 2001. 以二階段人工濕地去除生活污水中之營養鹽. 碩士論文,
國立中山大學環境工程研究所.
沈永寧, 1991. 工業廢水處理精要. 千華出版社.
周林森, 1996. 以生物濾床處理養鰻池循環水之研究. 碩士論文, 國立中
山大學海洋環境研究所.
林正芳, 林瑤勤, 羅棋穎, 吳忠信譯, 2002. 水及廢水處理理論與實務.
六合出版社.
林安秋, 1984. 作物之光合作用. 臺灣商務出版社.
林明德譯, 2000. 活性污泥處理程序之動力學及控制. 國立編譯館.
孫嘉福, 楊英賢, 蔡瀛逸, 劉明昭, 賴文淙譯, 1996. 環境化學. 高立出
版社.
容邵武, 1995. 聽,水在說話. 書泉出版社.
張怡塘, 2002. 微生物實驗. 高立出版社.
郭昶呈, 劉奕辰, 周函輝, 蕭丞祺, 2006. 以碳酸氫鈉為碳源於鹼液環境
批次培養擬球藻(B). 學生專題報告, 大葉大學環境工程學系.
陳昇明譯, 1985. 植物生理學. 三民出版社.
陳柏州, 2004. 以人工濕地淨化水質之研究. 碩士論文, 國立高雄第一科
技大學環境與安全衛生工程系.
陳燕珍, 1986. 光合作用. 自然科學文化出版社.
陳鎮東, 1994. 海洋化學. 茂昌出版社.
傅俊中, 2005. 自動控制技術專輯─生物反應工程技術. 機械工業, 265,
154-166.
程信雄, 2006. 以碳酸鈉與碳酸氫鈉為碳源於連續式光生化反應器培養
周氏扁藻. 碩士論文, 大葉大學環境工程學系.
楊盛行, 1999. 二氧化碳排放及減量因應對策. 工業污染防治, 73,
182-199.
經濟部水利署, 2006. 水資源永續利用與產業政策關係之研究.
經濟部水利署水利規劃試驗所, 2006. 台中市福田水資源回收中心放流
水再生利用研究.
劉康克, 1992. 化學與生活專輯─化學與全球變遷. 科學月刊, 23(9),661-668.
蔡皓程, 2007. 垂直流人工溼地氮循環過程研究與操作機制探討. 碩士
論文, 國立中山大學海洋環境及工程學系.
謝哲松譯, 1999. 活性污泥法之操作控制. 國立編譯館.
藍大鈞, 2002. 藻類固定二氧化碳與藻體的利用研究. 碩士論文, 長庚大
學化工與材料工程學系.
藍啟仁, 2005. 技術報導─溫室氣體二氧化碳固定技術. 工安環保報導,
27, 21-22.
魏喦壽, 王松茂, 王承楙, 1958. 綠藻大量培養之研究. 師大學報,3,27-42.
顧夏聲, 1990. 廢水生物處理數學模式. 曉園出版社.
內政部營建署污水下水道資訊網. http://sewer.cpami.gov.tw/.
台灣綠藻工業股份有限公司. http://www.taiwanchlorella.com.tw/.
陳衍昌藻類網址. http://ind.ntou.edu.tw/~b0232/.
經濟部工業局產業綠色技術輔導與推廣計畫網站.
http://proj.moeaidb.gov.tw/eta/.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top