( 您好!臺灣時間:2021/05/11 02:39
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Tsung-Hsun Tsai
論文名稱(外文):A System Platform of Multi-Factor Model
指導教授(外文):Yih jeng
外文關鍵詞:Multi-factor risk modelentity-relational model (ER model)Barrafactor analysisHalf-life
  • 被引用被引用:4
  • 點閱點閱:799
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究結合關聯式資料庫與數量化股票投資組合理論,設計出專屬於多因子模型使用的資料庫,並依照Barra風險模型標準流程以及該系統架構為基礎,建立多因子風險模型平台, 本研究所建立的資料庫有助於快速尋找與篩選具有解釋股票報酬的要素。
This research combines relational database framework and quantitative equity portfolio models based on the Barra Risk Model Handbook standard steps to design a database and computer platform for multi-factor risk management tasks. The multi-factor model facilitates fast search and efficient selection of descriptors with explanatory power for future stock returns.
The design of database is divided into three steps. First, descriptors are calculated and daily-update modules constructed. This study finds 48 key descriptors which play important roles in explaining stock returns of Taiwan. Second, entity relational model is applied to sort out linkages between pieces of important information in the factor model. Lastly, database auto-run procedures are setup to update the latest raw data on a monthly basis. Model parameter update and portfolio rebalancing is hence made seamless to meet practical operation demand for such a platform.
The development of the Multi-factor risk model is divided into five main steps. (1) Finding significant descriptors. (2) Forming common factors from descriptors. (3) Developing a multi-factor return model. (4) Developing a multi-factor risk model. (5) Running performance analysis and back-testing.
The empirical results show that the average adjusted R-squared of the MFM model is 0.5 during the period of 1998/04~2005/11. For combining descriptors into common factors, we run factor analysis. The multi-collinearity problem existing in the descriptors is well taken care of by such procedures. We use the exponentially weighted averaging method to compute the factor returns and forecast stock ranking. A half-life of 24 months appears to deliver the best performance in Taiwan stock market.
第一章 緒論 1
第1節 研究背景與現況 1
第2節 研究目的與動機 4
第3節 研究架構與流程 6
第二章 文獻探討 7
第1節 現代投資組合理論 7
第2節 資料模型與實體關聯模型 8
第3節 多因子模型 11
第4節 因素分析與主成份分析 12
第三章 研究方法 14
第1節 研究範圍 14
第2節 多因子資料庫 17
第3節 多因子風險模型 25
第四章 實證結果 46
第1節 有效要素挑選結果 46
第2節 主成分分析結果 49
第4節 多因子模型建構結果-報酬部份 56
第5節 多因子模型建構結果-風險部分 66
第五章 結論與後續研究建議 69
第1節 結論 69
第2節 後續研究建議 71
參考文獻: 73
附錄A: 因子資料庫之資料表綱要 75
附錄B: 要素定義表 77
1.Banz, Rolf W., (1981), The relationship between return and market value of common stock, Journal of Financial Economics 9, 3-18.
2.BARRA (1998), ─United States Equity Version 3 (E3), ─Risk Model Handbook.
3.Barry, C. B., Goldreyer, E., Lockwood, L., and Rodriguez, M. (2002), ─Robustness of Size and Value Effects in Emerging Equity Markets, 1985-2000, Emerging Markets Review, Vol. 3, No. 1, March, pp. 1-30.
4.Basu, Sanjoy, (1983), The relationship between earnings’ yield, market value and the return for NYSE common stocks: Further evidence, Journal of Financial Economics 12, this issue.
5.Chincarini, Ludwig B. and Kim, D. (2006), ─Quantitative Equity Portfolio Management: An Active Approach to Portfolio Construction and Management, McGraw-Hill.
6.Connor, G. (1995), ─The Three Types of Factor Models: A Comparison of Their Explanatory Power, Financial Analysis Journal, May/June.
7.Engle, R., V.K. Ng and M. Rothschild (1990). Asset Pricing With a Factor ARCH Covariance Structure: Empirical Estimation for Treasury Bill, Journal of Econometrics, 45, 213--237.
8.Fama, Eugene F. and French, Kenneth R. (1992), ─The Cross-Section of Expected Stock Returns, Journal of Finance, Vol. 47, No. 2, June, pp. 427-465.
9.Fama, Eugene F. and James D. MacBeth (1973), ─Risk, Return, and Equilibrium:Empirical Tests, Journal of Political Economy, Vol. 81, No. 3, May/June, pp. 607-636.
10.Francis X. Diebold and Marc Nerlove (1989). The Dynamics of Exchange Rate Volatility: A Multivariate Latent Factor Arch Model, Journal of Applied Econometrics, Vol. 4, No. 1 (Jan. - Mar., 1989), pp. 1-21
11.Grinold & Kahn (2000), Active Portfolio Management, ─A Quantitative Approach for Producing Superior Return and Controlling Risk(2th Edition), McGraw-Hill.
12.Gujarati, Damodar N. (2003), ─Basic Econometrics (4th Edition).
13.Litterman, R. and The Quantitative Resources Group of Goldman Sachs Asset Management (2003), ─Modern Investment Management: An Equilibrium Approach.
14.Peter P. Chen (1976). The Entity-Relationship Model: Toward a Uni_ed View of Data. ACM Trans. On Database Systems, Vol. 1, No. 1, pages 1-36.
15.Ross, Stephen A. (1976), ─The Arbitrage Theory of Capital Asset Pricing, Journal of Finance, Vol. 13, pp. 341-360.
16.Shyu, S., Jeng, Y., Ton, W.H., Lee, K.J. and Chuang, H.M. (2006), ─Taiwan Multi-factor Model Construction: Equity Market Neutral Strategies Application, Managerial Finance, Vol. 32, No. 11, pp. 915-947.
17.Syu, M.S. (2007) ─Stock Selection Performance Analysis using Multi-Factor Model in Taiwan. National Sun Yat-sen University, Taiwan. SYU Ton
18.Trzcinka, C. (1986), ─On the Number of Factors in the Arbitrage Pricing Model, Journal of Finance, Vol. 41, No. 2, pp. 347-368.
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔