|
Adler, D. (1993). Genetic algorithms and simulated annealing: a marriage proposal. In Proceedings of IEEE International Conference on Neural Networks, volume 2, pages 1104– 1109. Ahuja, R. K., O‥ zlem Ergun, Orlin, J. B., and Punnen, A. P. (2002). A survey of very largescale neighborhood search techniques. Discrete Applie Mathematics, 123(1-3):75–102. Ambati, B. K., Ambati, J. ., and Mokhtar, M. M. (1991). Heuristic combinatorial optimization by simulated darwinian evolution: a polynomial time algorithm for the traveling salesman problem. Biological Cybernetics, 65:31–35. Angeline, P. (1998). Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences. pages 601–610. Baraglia, R., Hidalgo, J. I., and Perego, R. (2001). A hybrid heuristic for the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 5(6):613–622. Barvinok, A. (2003). The geometric maximum traveling salesman problem. Journal of the ACM, 50(5):641–664. Berger, J. and Barkaoui, M. (2004). A parallel hybrid genetic algorithm for the vehicle routing problem with time windows. Computers and Operations Research, 31(12):2037–2053. Blum, C. and Merkle, D., editors (2008). Swarm Intelligence: Introduction and Applications. Natural Computing Series. Springer. Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35(3):268–308. Blum, C. and Roli, A. (2008). Hybrid metaheuristics: An introduction. In Hybrid Metaheuristics, volume 114, pages 1–30. Springer. Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intelligence: From Natural to Artificial Systems. Oxford. Bradley, P. S. and Fayyad, U. M. (1998). Refining initial points for k-means clustering. In Proceedings of the International Conference on Machine Learning, pages 91–99. Bui, T. N. and Moon, B. R. (1994). A fast and stable hybrid genetic algorithm for the ratiocut partitioning problem on hypergraphs. In 31st Conference on Design Automation, pages 664–669. Cant′u-Paz, E. (1998). A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux et Systems Repartis, 10(2):141–171. Cant′u-Paz, E. (2000). Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publishers, Norwell, MA, USA. Cant′u-Paz, E. and Goldberg, D. E. (2000). Efficient parallel genetic algorithms: theory and practice. Computer Methods in Applied Mechanics and Engineering, 186(2-4):221–238. Cerny, V. (1985). A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm. Journal of Optimization Theory and Applications, 45:41–51. Chin, A. J., Kit, H. W., and Lim, A. (1999). A new GA approach for the vehicle routing problem. In Proceedings of the IEEE International Conference on Tools with Artificial Intelligence, pages 307–310. Chu, S. C., Roddick, J. F., and Pan, J. S. (2004). Ant colony system with communication strategies. Information Sciences, 167(1-4):63–76. Clerc, M. and Kennedy, J. (2002). The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1):58–73. Cormen, T., Leiserson, C., and Rivest, R. (1990). Introduction to Algorithms. MIT Press. Cotta, C., ghazali Talbi, E., and Alba, E. (2005). Parallel hybrid metaheuristics, pages 347– 370. John Wiley & Sons, Hoboken, N.J. Das, S., Abraham, A., and Konar, A. (2008). Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm. Pattern Recognition Letters, 29(5):688–699. Davis, L. (1985). Applying adaptive algorithms to epistatic domains. In Proceedings of the International Joint Conference on Artificial Intelligence, pages 162–164. Dawkins, R. (1989). The selfish gene. Oxford University Press, Oxford New York. Day, W. (1992). Complexity theory: An introduction for practitioners of classification. In Clustering and Classification, P. Arabie and L. Hubert, Eds. World Scientific Publishing Co., Inc., River Edge, NJ. Dorigo, M. and Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1):53–66. Dorigo, M., Maniezzo, V., and Colorni, A. (1996). The ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics—Part B, 26(1):29–41. Dorigo, M. and St‥utzle, T. (2004). Ant Colony Optimization (Bradford Books). The MIT Press. Eberhart, R. C. and Shi, Y. (1998). Comparison between genetic algorithms and particle swarm optimization. In Proceedings of the 7th International Conference on Evolutionary Programming VII, pages 611–616, London, UK. Springer-Verlag. Eberhart, R. C., Shi, Y., and Kennedy, J. (2001). Swarm Intelligence (The Morgan Kaufmann Series in Artificial Intelligence). Morgan Kaufmann. Ehrgott, M. and Gandibleux, X. (2000). A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum, 22(4):425–460. Elkan, C. (2003). Using the triangle inequality to accelerate k-means. In Proceedings of the Twentieth International Conference on Machine Learning, pages 147–153. Endoh, S., Toma, N., and Yamada (1998). Immune algorithm for n-tsp. In IEEE International Conference on Systems, Man and Cybernetics, volume 4, pages 3844–3849. Eschrich, S., Ke, J., Hall, L. O., and Goldgof, D. B. (2003). Fast accurate fuzzy clustering through data reduction. IEEE Transactions on Fuzzy Systems, 11(2):262–270. Ester, M., peter Kriegel, H., S, J., and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of International Conference on Knowledge Discovery and Data Mining, pages 226–231. Feo, T. A. and Resende, M. G. (1995). Greedy randomized adaptive search procedures. Journal of Global Optimization, 6(2):109–133. Flood, M. M. (1955). The traveling salesman problem. Operation Research, 4:61–78. Forrest, S. and Mitchell, M. (1993). Relative building-block fitness and the building-block hypothesis. In Whitley, D. L., editor, Foundations of Genetic Algorithms 2, pages 109–126, San Mateo, CA. Morgan Kaufmann. Gambardella, L. M., Taillard, R., and Agazzi, G. (1999). MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows. In New Ideas in Optimization, pages 63–76. McGraw-Hill. Garey, M. and Johnson, D. (1979a). Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company. Garey, M. R. and Johnson, D. S. (1979b). Computers and Intractability : A Guide to the Theory of NP-Completeness. W. H. Freeman & Co Ltd. Geem, Z.W., Kim, J. H., and Loganathan, G. (2001). A new heuristic optimization algorithm: Harmony search. SIMULATION, 76(2):60–68. Gelenbe, E., Ghanwani, A., and Stinivasan, V. (1997). Improved neural heuristics for multicast routing. IEEE Journal on Selected Areas in Communications, 15(2):147–155. Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13(5):533–549. Glover, F. (1989). Tabu search—part I. ORSA Journal on Computing, 1(3):190–206. Glover, F. (1990). Tabu search—part II. ORSA Journal on Computing, 2(1):4–32. Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional. Goldberg, D. E., Deb, K., and Korb, D. (1990). An investigation of messy genetic algorithms. Technical Report TCGA 90005, TCGA, University of Alabama, Tuscaloosa, Alabama. Goldberg, D. E. and Richardson, J. (1987). Genetic algorithms with sharing for multimodal function optimization. In Proceedings of the Second International Conference on Genetic Algorithms on Genetic algorithms and their application, pages 41–49. L. Erlbaum Associates Inc. Grefenstette, J. J. (1993). Deception considered harmful. In Whitley, D. L., editor, Foundations of Genetic Algorithms 2, pages 75–91, San Mateo, CA. Morgan Kaufmann. Gr‥otschel, M., Lov′asz, L., and Schrijver, A. (1981). The ellipsoid method and its consequences in combinatorial optimization. Combinatorica, 1(2):169–197. Guha, S., Meyerson, A., Mishra, N., and Motwani, R. (2003). Clustering data streams: Theory and practice. IEEE Transactions on Knowledge and Data Engineering, 15(3):515–528. Hammouda, K. M. and Kamel, M. S. (2004). Efficient phrase-based document indexing for web document clustering. IEEE Transactions on Knowledge and Data Engineering, 16(10):1279–1296. Hochbaum, D. S. and Shmoys, D. B. (1985). Using dual approximation algorithms for scheduling problems: Theoretical and practical results. In Proceedings of the 26th Annual Symposium on Foundations of Computer Science, pages 79–89. Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. MIT Press, Boston, MA. IRIS (1988). IRIS. Jain, A., Murty, M., and Flynn, P. (1999). Data clustering: A review. ACM Computing Surveys, 31(3). Jain, A. K. and Dubes, R. C. (1988). Algorithms for clustering data. Prentice Hall, Englewood Cliffs, NJ. Jayalakshmi, G. A., Sathiamoorthy, S., and Rajaram, R. (2001). An hybrid genetic algorithm: A new approach to solve traveling salesman problem. International Journal of Computational Engineering Science, 2(2):339–355. Jong, K. A. D. (1975). An analysis of the behavior of a class of genetic adaptive systems. PhD thesis, Ann Arbor, MI, USA. KDD (1998). KDD’98 dataset. Kennedy, J. (2000). Stereotyping: improving particle swarm performance with cluster analysis. In in Proceedings of the 2000 Congress on Evolutionary Computation, volume 2, pages 1507–1512. Kennedy, J. and Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, pages 1942–1948. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598):671–680. Kogan, J. (2007). Introduction to Clustering Large and High-Dimensional Data. Cambridge University Press, NY, USA. Koza, J. R. (1992). Hierarchical automatic function definition in genetic programming. In Foundations of Genetic Algorithms, pages 297–318. Krishna, K. and Murty, M. N. (1999). Genetic k-means algorithm. IEEE Transactions on System, Man and Cybernetics—Part B:Cybernetics, 29(3):433–439. Kuo, R., Wang, H., Hu, T., and Chou, S.-H. (2005). Application of ant k-means on clustering analysis. Computers & Mathematics with Applications, 50(10-12):1709–1724. Laszio, M. and Mukherjee, S. (2006). A genetic algorithm using hyper-quadtrees for lowdimensional k-means clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4):533–543. Lawer, E. L., Lenstra, J. K., Kan, A. H. R., and D.B.Shmoys (1985). The Traveling Salesman Problem. Wiley, New York, NY. Lee, C. Y., Tsai, C.W., Chiang, M. C., and Yang, C. S. (2008). Fast VQ codebook generation via pattern reduction. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pages 256–261. Lee, J. S., Oh, I. S., and Moon, B. R. (2004). Hybrid genetic algorithms for feature selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(11):1424–1437. Liaw, C. F. (2000). A hybrid genetic algorithm for the open shop scheduling problem. European Journal of Operational Research, 124(1):28–42. Lin, F. T., Kao, C. Y., and Hsu, C. C. (1993). Applying the genetic approach to simulated annealing in solving some NP-hard problems. IEEE Transactions on Systems, Man and Cybernetics, 23(6):1752–1767. Lin, S. and Kernighan, B. W. (1973a). An effective heuristic algorithm for the travelingsalesman problem. Operations Research, 21(2):498–516. Lin, S. and Kernighan, B.W. (1973b). An effective heuristic algorithm for traveling salesman problem. Operation Research, 21:498–516. Liu, B. (2007). Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data (Data- Centric Systems and Applications). Springer. Lloyd, S. (1982). Least Square Quantization in PCM. IEEE Transactions on Information Theory, 28:129–137. Lo, C. and Hus, C. (1998). Annealing framework with learning memory. IEEE Transactions on Systems, Man and Cybernetics, Part A, 28(5):1–13. Lobo, F. G., Goldberg, D. E., and Pelikan, M. (2000). Time complexity of genetic algorithms on exponentially scaled problems. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ’00), pages 151–158. ACM. Lourenc﹐o, H. R., c. Martin, O., and St‥utzle, T. (2003). Iterated local search, in: Handbook of Metaheuristics (Chapter 11). Springer. Lu, Y., Lu, S., Fotouhi, F., Deng, Y., and Brown, S. J. (2004a). FGKA: A fast genetic k-means clustering algorithm. Proceedings of Symposium on Applied Computing, pages 622–623. Lu, Y., Lu, S., Fotouhi, F., Deng, Y., and Brown, S. J. (2004b). Incremental genetic k-means algorithm and its application in gene expression data analysis. International Journal of BMC Bioinformatics, 5(172). Mahfoud, S. W. and Goldberg, D. E. (1995). Parallel recombinative simulated annealing: a genetic algorithm. Parallel Computing, 21(1):1–28. Man, K. F., Tang, K. S., and Kwong, S. (1999). Genetic Algorithms: Concepts and Designs. Springer-Verlag, New York, Secaucus, NJ, USA. Maniezzo, V. and Carbonaro, A. (1999). Ant colony optimization: An overview. In Essays and Surveys in Metaheuristics, pages 21–44. Kluwer Academic Publishers. Mart′ı, R. (1993). Multi-start methods. In Glover, F. W. and Kochenberger, G. A., editors, Handbook of Metaheuristics, pages 355–368, Boston, MA. Kluwer Academic Publishers. Martin, W. N., Barker, A. L., and Cohoon, J. P. (1999). Problem perturbation: Implications on the fitness landscape. IEEE Congress on Evolutionary Computation, 1:744–751. McQueen, J. B. (1967). Some methods of classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pages 281–297. Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, Berlin, Germany. Michalski, R. S. (2000). Learnable evolution model: Evolutionary processes guided by machine learning. Machine Learning, 38(1-2):9–40. Misevicius, A. (2006). A fast hybrid genetic algorithm for the quadratic assignment problem. In Proceedings of Genetic and evolutionary computation (GECCO ’06), pages 1257–1264. ACM. Montemanni, R., Gambardella, L. M., Rizzoli, A. E., and Donati, A. V. (2003). A new algorithm for a dynamic vehicle routing problem based on ant colony system. In Second International Workshop on Freight Transportation and Logistics, pages 27–30. Moscato, P. (1999). New Ideas in Optimization, chapter Memetic Algorithms: A short introduction, pages 219–234. McGraw-Hill, Maidenhead, UK, England. M‥uhlenbein, H. (1989). Parallel genetic algorithms, population genetics and combinatorial optimization. In Proceedings of the third international conference on Genetic algorithms, pages 416–421, San Francisco, CA, USA. Muhlenbein, H. and Paa, G. (1996). From recombination of genes to the estimation of distributions i. binary parameters. In Parallel Problem Solving from Nature (PPSN), pages 178–187. Nagata, Y. and Kobayashi, S. (1997). Edge Assembly Crossover: A high-power genetic algorithm for the traveling salesman problem. In Proceedings of the 7th International Conference on Genetic Algorithms, pages 450–457. Nara, K. (1997). Genetic algorithm for power systems planning. volume 1, pages 60–65. Ng, R. T. and Han, J. (2002). Clarans: A method for clustering objects for spatial data mining. IEEE Transactions on Knowledge and Data Engineering, 14(5):1003–1016. Nguyen, H. D., Yoshihara, I., Yamamori, K., and Yasunaga, M. (2007). Implementation of an effective hybrid GA for large-scale traveling salesman problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 37(1):92–99. Omran, M. G., Engelbrecht, A. P., and Salman, A. A. (2005a). Particle swarm optimization method for image clustering. International Journal of Pattern Recognition and Artificial Intelligence, 19(3):297–321. Omran, M. G. H., Engelbrecht, A. P., and Salman, A. (2005b). Dynamic clustering using particle swarm optimization with application in image segmentation. In Prococeedings of the 5th World Enformatika Conference, pages 332–344. Ordonez, C. and Omiecinski, E. (2004). Efficient disk-based k-means clustering for relational databases. IEEE Transactions on Knowledge and Data Engineering, 16(8):909–921. Ouadfel, S. and Batouche, M. (2003). MRF-based image segmentation using ant colony system. Electronic Letters on Computer Vision and Image Analysis,, 2(2):12–24. Parsopoulos, K. E. and Vrahatis, M. N. (2002). Recent approaches to global optimization problems through particle swarm optimization. Natural Computing, 1(2):235–306. Pelleg, D. and Moore, A. W. (2000). x-means: Extending k-means with efficient estimation of the number of clusters. In Proceedings of the Seventeenth International Conference on Machine Learning, pages 727–734. Pepper, J.W., Golden, B. L., andWasil, E. A. (2002). Solving the traveling salesman problem with annealing-based heuristics: A computational study. IEEE Transactions on Systems, Man and Cybernetics–Part A: Systems and Humans, 32(1):72–77. Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., and Zaidi, M. (2005). The bees algorithm. Technical report, Manufacturing Engineering Centre, Cardiff University, Royaumes-Unis. Pinto, D. and Bar′an, B. (2005). Solving multiobjective multicast routing problem with a new ant colony optimization approach. In Proceedings of the 3rd international IFIP/ACM Latin American conference on Networking, pages 11–19, New York, NY, USA. ACM. Reeves, C. R., editor (1993). Modern heuristic techniques for combinatorial problems. John Wiley & Sons, Inc., New York, NY, USA. Reinelt, G. (1994). The Traveling Salesman: Computational Solutions for TSP Applications, volume 840. Springer-Verlag, Berlin Heidelberg, Heidelberg. Reuters (1987). Reuters-21578 Text Categorization Collection. Robbins, H. and Monro, S. (1951). A stochastic approximation method. The Annals of Mathematical Statistics, 22(3):400–407. Saatchi, S. and Hung, C. C. (2005). Hybridization of the ant colony optimization with the k-means algorithm for clustering. In SCIA, volume 3540 of Lecture Notes in Computer Science, pages 511–520. Springer. Sch, B., o Smola, and uller, K. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299–1319. Schrijver, A. (2009). A course in combinatorial optimization. Shi, Y. and Eberhart, R. C. (1998). Parameter selection in particle swarm optimization. In Proceedings of the 7th International Conference on Evolutionary Programming VII, pages 591–600, London, UK. Springer-Verlag. Shirai, H., Ishigame, A., Kawamoto, S., and Taniguchi, T. (1994). A solution of combinatorial optimization problem by uniting genetic algorithms with hopfield’s model. IEEE Computational Intelligence, 7:4704–4709. Shmoys, D. B. (1995). Computing near-optimal solutions to combinatorial optimization problems. In Combinatorial Optimization, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 355–397. AMS Publications. Sinha, A. and Goldberg, D. E. (2003). A survey of hybrid genetic and evolutionary algorithms. IlliGAL Report No. 2003004, University of Illinois at Urbana-Champaign. Steinhaus, H. (1956). Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci, 1:801–804. Stutzle, T. (1998). Parallelization strategies for ant colony optimization. In Proceedings of PPSN-V, Fifth International Conference on Parallel Problem Solving from Nature, pages 722–731. Springer-Verlag. Su, M. C. and Chang, H. T. (2000). Fast self-organizing feature map algorithm. IEEE Transactions on Neural Networks, 11(3):721–733. Sultan, A. B. M., Mahmod, R., Sulaiman, M. N., and Bakar, M. R. A. (2008). Selecting quality initial random seed for metaheuristic approaches: A case of timetabling problem. International Journal of the Computer, the Internet and Management, 16(1):38–45. Talbi, E. G. (2002). A taxonomy of hybrid metaheuristics. Journal of Heuristics, 8(5):541– 564. Ting, C. K. and Ko, C. F. (2008). Incorporating tabu search into the survivor selection of genetic algorithm. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pages 553–558. Ting, C. K., Li, S. T., and Lee, C. (2001). TGA: a new integrated approach to evolutionary algorithms. In Proceedings of the Congress on Evolutionary Computation, volume 2, pages 917–924. Ting, C. K., Li, S. T., and Lee, C. (2003). On the harmonious mating strategy through tabu search. Information Sciences, 156(3-4):189–214. Tsai, C. F., Chen, Z. C., and Tsai, C. W. (2002a). MSGKA: An efficient clustering algorithm for large databases. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol.5. Tsai, C. F., Tsai, C. W., and Chen, C. P. (2004a). A novel algorithm for multimedia multicast routing in a large scale network. Journal of Systems and Software, 72(3):431–441. Tsai, C. F., Tsai, C. W., and Yang, T. (2002b). A modified multiple-searching method to genetic algorithms for solving traveling salesman problem. In IEEE International Conference on Systems, Man and Cybernetics, volume 3. Tsai, C. W., Lee, C. Y., Chiang, M. C., and Yang, C. S. (2009a). A fast VQ codebook generation algorithm via pattern reduction. Elsevier Pattern Recognition Letters, 30(7):653–660. Tsai, C. W., Tseng, S. P., Chiang, M. C., and Yang, C. S. (2009b). A time-efficient method for metaheuristics: Using tabu search and tabu GA as a case. In Proceedings of the Ninth International Conference on Hybrid Intelligent Systems. (To appear). Tsai, C. W., Yang, C. S., and Chiang, M. C. (2007). A novel pattern reduction algorithm for k-means based clustering. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pages 504–509. Tsai, H. K., Yang, J. M., Tsai, Y. F., , and Kao, C. Y. (2004b). A serial population algorithm for dynamic optimization problems. IEEE Transactions on System, Man, and Cybernetics– Part B: Cybernetics, 34(4):1718–1729. Tseng, L. Y. and Yang, S. B. (2000). A genetic clustering algorithm for data with nonspherical- shape clusters. Pattern Recognition, 33(7):1251–1259. Tseng, L. Y. and Yang, S. B. (2001). A genetic approach to the automatic clustering problem. Pattern Recognition, 34(2):415–424. Tseng, S. P., Tsai, C.W., Chiang, M. C., and Yang, C. S. (2008). Fast genetic algorithm based on pattern reduction. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pages 214–219. UCI (1998). Synthetic Control Chart Time Series. Universit‥at Heidelberg (1995). TSPLIB. van der Merwe, D. W. and Engelbrecht, A. P. (2003). Data clustering using particle swarm optimization. In The 2003 Congress on Evolutionary Computation, volume 1, pages 215– 220. Vesanto, J. and Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE Transactions on Neural Networks, 11(3):586–600. Voudouris, C. and Tsang, E. P. K. (2003). Guided local search, in: Handbook of Metaheuristics (Chapter 7). Springer. Wang, L. and Jiao, L. (2000). A novel genetic algorithm based on immunity. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 30(5):552–561. Wang, L., Maciejewski, A. A., Siegel, H. J., Roychowdhury, V. P., and Eldridge, B. D. (2005). A study of five parallel approaches to a genetic algorithm for the traveling salesman problem. Intelligent Automation and Soft Computing, 11(4):217–234. Wang, W., Yang, J., and Muntz, R. (1997). STING: A statistical information grid approach to spatial data mining. In Proceedings of Conference on Very Large Databases, pages 186–195. Whitley, D., Starkweather, T., and Shaner, D. (1991). The traveling salesman and sequence scheduling: Quality solutions using genetic edge recombination. In Handbook of Genetic Algorithms, pages 350–372. Van Nostrand Reinhold, New York. Xu, R. and II, D. W. (2005). Survey of clustering algorithms. IEEE Transaction on neural netowrks, 16(3):645–678. Xu, R. and Wunsch, D. C. (2008). Clustering. Wiley, John & Sons, Inc. Yang, R. (1997). Solving large travelling salesman problems with small populations. pages 157–162. Yoichi, T. and Nobuo, F. (1998). An improved genetic algorithm using the convex hull for traveling salesman problem. In IEEE International Conference on Systems, Man and Cybernetics, volume 3, pages 2279–2284. Zhang, R. and Rudnicky, A. I. (2002). A large scale clustering scheme for kernel k-means. 16the International Conference on Pattern Recognition, 4:40289. Zhang, T., Ramakrishnan, R., and Livny, M. (1996). BIRCH: an efficient data clustering method for very large databases. In Proceedings of ACM SIGMOD international conference on Management of data, pages 103–114.
|