跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 17:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳聖全
研究生(外文):Sheng-quane Chen
論文名稱:低壓差線性穩壓器及動態電壓調升邏輯採用90奈米製程
論文名稱(外文):Low Dropout Linear Regulator & Dynamic Level Shifter Logic in a 0.09 m CMOS Technology
指導教授:郭可驥
指導教授(外文):Ko-Chi Kuo
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:86
中文關鍵詞:低壓差線性穩壓器電壓調升電路動態邏輯
外文關鍵詞:Dynamic logicLow dropout linear regulatorlevel shifter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著消費性電子產品的應用越來越廣泛,同一個晶片上可以執行的功能也越來越多,但相對於整體供應電壓上的考量,不同區塊電路所需要的供應電壓也會不一樣,因此需要不同的供應電壓,另外在功率消耗的考量上,電路工作在低電壓與低電流時能降低功率的消耗。隨著能源危機的影響,許多產品都開始注意所謂的綠色能源,綠色能源主要優點在於能夠更省電,但整體效率不會變差為主。此外,在製程技術不斷地演進的同時,由於可靠度的考量,其工作電壓也必須隨著製程的進步而降低。因此本論文應用在一個3D 繪圖IC晶片的電源管理上,利用線性穩壓器將供應電壓3.3V降至1.2V, 1.1V, 1.0V, 0.9V, 0.8V的輸出電壓,並提供穩定的電壓給核心電路及I/O電路。隨著電源管理直接影響到電路的功率消耗越來越被注重,本論文也著重在利用電壓準位調升電路嵌入進一般常用的數位邏輯閘中,讓在使用邏輯閘的同時也可以利用電壓準位調升電路的特性降定整體的功率消耗,因此電源IC在未來的產品應用上變的更重要。
As the application of the consuming electronic products being used extensively, more and more functions can be worked on the same chip. Different function blocks may need different supply voltage. Considering of power consumption, circuit operated at low voltage and low current can achieve power reduction. Due to the energy crisis nowadays, plenty of products begin to focus on the green power. The main advantage of green power is saving power, which will not affect the efficiency. In addition, while the CMOS technology process evolves all the time, the stability of the operation voltage needs to be reduced by the advancement. Thus, the power management in a 3D graphic chip application is going to be introduced in this thesis. Utilizing the linear regulator to reduce the DC to 1.2, 1.1, 1.0, 0.9 and 0.8 V from 3.3V, and support a stable voltage for core circuits and I/O circuits. With the emphasis on the circuit efficiency is affected by power management, the level shifter to embed normal useful digital logic is also investigated. When using in the logic gates, it can reduce power consumption simultaneously. Therefore, it is important to adopt power IC in the future.
CHAPTER 1 Introduction .................................................................................................. 1
1.1 Introduction........................................................................................................... 1
1.2 Motivation............................................................................................................. 1
1.3 Research Goals and Contribution ......................................................................... 2
1.4 Thesis Organization .............................................................................................. 3
CHAPTER 2 Introduction of Voltage regulator................................................................. 4
2.1 Introduction........................................................................................................... 4
2.2 Basic Regulator..................................................................................................... 4
2.2.1 Basic low dropout linear regulator architecture......................................... 5
2.2.2 Basic Switch regulator architecture ........................................................... 7
2.3 Specifications and Definitions of LDO................................................................. 9
2.3.1 Dropout Voltage ......................................................................................... 9
2.3.2 Quiescent Current .................................................................................... 11
2.3.3 Current Efficiency.................................................................................... 12
2.3.4 Efficiency................................................................................................. 13
2.3.5 Load Regulation....................................................................................... 13
2.3.6 Line Regulation........................................................................................ 14
2.3.7 Power Supply Rejection........................................................................... 15
2.3.8 Pass Devices Design ................................................................................ 15
2.3.9 ESR of Output Capacitor ......................................................................... 18
CHAPTER 3 The LDO Architecture................................................................................ 20
3.1 Architecture......................................................................................................... 20
3.1.1 The LDO circuit Architecture Implementation........................................ 22
3.2 Bandgap Reference ............................................................................................. 23
3.2.1 Conventional Bandgap Voltage Reference .............................................. 23
3.2.2 The Bandgap Reference Analysis ............................................................ 24
3.3.3 Circuit Implementation ............................................................................ 28
3.3 Error Amplifier.................................................................................................... 31
3.4 Summary ............................................................................................................. 32
CHAPTER 4 LDO Simulations........................................................................................ 33
CHAPTER 5 Dynamic Level Converter Logic ................................................................ 41
5.1 Multiple Voltage Techniques............................................................................... 41
5.2Conventional Level Shifter Circuit...................................................................... 44
5.3 Dynamic Logic.................................................................................................... 46
5.4 Dynamic Logic Combined Level Shifter............................................................ 47
5.5 Other Level Shifter Structure.............................................................................. 48
5.6 Improvement Level Converter............................................................................ 54
5.7 Combination of Level Converter ........................................................................ 55
CHAPTER 6 Simulations for Level Converter ................................................................ 57
CHAPTER 7 Layout of All Circuits................................................................................. 66
7.1 Layout ................................................................................................................. 66
CHAPTER 8 Conclusion and Future Works .................................................................... 71
8.1 Conclusion .......................................................................................................... 71
8.2 Futures Works..................................................................................................... 71
References........................................................................................................................ 72
[1] A. P. Chandrakasan, R. Allmon, A. Stratakos, and R. W. Brodersen, “Design of
portable system,” in Proc. IEEE CICC, 1994, pp. 259-266.
[2] M. C. Johnson, and K. Roy, “Scheduling And Optimal Voltage Selection For Low
Power Multi-Voltage DSP Datapaths,” in Proc. IEEE ISCAS, 1997, pp.2152-2155.
[3] K. Usami, M. Igarashi, F. Minami, M. K. Ishikawa, M. Ichida, and K. Nogami,
“Automated Low-Power Technique Exploiting Multiple Supply Voltages Applied To
A Media Processor,” IEEE J, Solid-State Circuits, vol. 33, pp. 463-472, March 1998.
[4] J. S. Wang, S. J. Shieh, J. C. Wang, and C. W. Yeh, “Design Of Standard Cells Used
Low Power ASIC’s Exploiting The Multiple-Supply-Voltage Scheme,” in Proc.
IEEE IASICC, 1998, pp. 119-123.
[5] J. M. Yang, “Linear Voltage Regulators,” ECE 480, TEAM 2, 2007.
[6] T. Regan, “Low Dropout Linear Regulators Improve Automotive And
Battery-Powered Systems,” Power conversion and Intelligent Motion, pp. 65-69,
Feb 1990.
[7] J. Wong, “A Low-Noise Low Drop-Out Regulator for Portable Equipment,”
Powerconversion and Intelligent Motion, pp. 38-43, May 1990.
[8] F. Goodenough, “Fast LDOs And Switchers Provide Sub-5-V Power,” Electronic
Design, pp. 65-74, September 5, 1995.
[9] F. Goodenough, “Power-Supply Rails Plummet and Proliferate,” Electronic Design,
pp. 51-55, July 24, 1995.
[10] A. Matsuzawa, “Low Voltage Mixed Analog/Digital Circuit Design for Portable
Equipment,” in Proc. IEEE VLSIC symp, 1993, pp. 49-54.
[11] K.M. Tham and K. Nagaraj, “A Low Supply Voltage High PSRR Voltage Reference
in CMOS Process,” IEEE J, Solid-State Circuits, vol. 30, pp. 586-590, May 1995.
[12] Duncan A. Grant, John Gowar, “POWER MOSFET: Theory and Applications”,
NewYork: John Wiley & Sons, Inc., 1989
[13] M. Hiraki, T. Ito, A. Fujiwara, T. Ohashi, T. Hamano and T. Noda, “ A63-μW
Standby Power Microcontroller With On-Chip Hybrid Regulator Scheme,” IEEE J.
Solid-State Circuits, vol. 37, pp. 605-611, May 2002.
[14] J. Kim and M. A. Horowitz, “A Efficient Digital Sliding Controller for Adaptive
Power-Supply Regulation,” IEEE J, Solid-State Circuits, vol. 37, pp 639-647, May
2002.
[15] M. H. Rashid, “Power Electronics: Circuits, Devices, and Applications,”
Prentice-Hall International, Inc.
[16] S. K. Lau, K. N. Leung, and P. K. T. Mok, “Analysis Of Low Dropout Regulator
Topologies For Low-Voltage Regulation,” in Proc. IEEE EDSSC, 2003, pp.
379-382.
[17] R. J. Milliken, S. M. Jose and S. S. Edgar “Full On-Chip CMOS Low-Dropout
Voltage Regulator Current,” in Proc. IEEE TCSI, 2007, pp. 1879-1890.
[18] B. S. Lee, “Understanding the Terms and Definitions of LDO Voltage Regulators,”
Application Reports, Texas Instruments Inc., literature number SLVA079.
[19] B. S. Lee, “Technical Review of Low Dropout Voltage Regulator Operation and
Performance,” Application Report, Texas Instruments Inc., October 1999.
[20] G. A. Rincon-Mora, and P. E. Allen, “A Low-Voltage, Low Quiescent Current, Low
Drop-Out Regulator,” IEEE J, Solid-State Circuits, vol. 33, pp 36-44, Jan 1998.
[21] G. W. den, Besten and Bram Nauta, “ Embedded 5 V- 3.3 V Voltage Regulator for
Supplying Digital IC’s in 3.3 V CMOS Technology,” IEEE J, Solid-State Circuits,
vol. 33, pp. 956-962, July 1998.
[22] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed.
Bosten, MA: Kluwer Academic, 2001.
[23] A. C. van der Woerd, et al, “Low-Power Current-Mode 0.9-V Voltage Regulator,”
IEEE J, Solid-State Circuits, vol. 29, pp. 1138-1141, Sept. 1994.
[24] T. Mano et al, “Circuit techniques for VLSI memory,” IEEE J, Solid-State Circuits,
vol. SC-18, Oct. 1983.
[25] T. Endoh, K. Sunaga, H. Sakuraba and F. Masuoka, “An On-Chip 96.5% Current
Efficiency CMOS Linear Regulator Using a Flexible Control Technique of Output
Current,” IEEE J, Solid-State Circuits, vol. 36, pp. 34-39, Jan. 2001.
[26] I. Ali and R. Griffith, “A Fast Response, Programmable PA Regulator Subsystem for
Dual Mode CDM/AMPS Handsets”, in Proc. IEEE RFIC symp, 2000, pp. 231-234.
[27] H. J. Shin, et al, “Low-Dropout On-Chip Voltage Regulator for Low-Power Circuits,” in Proc. IEEE LPE symp, 1994, pp. 76-77.
[28] K. Salmi, C. Scarabello, O. Chevalerias, and F. Rodes, “4 V, 5 mA Low Drop-Out
Regulator Using Series-Pass n-Channel MOSFET,” in Proc. IEEE EL, 1999,
pp.1214-1215.
[29] G. Bontempo, et al, “Low Supply Voltage, Low Quiescent Current, ULDO Linear
Regulator,” in Proc. IEEE ICECS, 2001, pp. 409-412.
[30] G. A. Rincon-Mora and P. E. Allen, “Optimized Frequency-Shaping Circuit
Topologies for LDO’s,” IEEE J, Solid-State Circuits, vol. 45, pp.703-708, Jun 1998.
[31] G. A. Rincon-Mora and P. E. Allen, “A Low-Dropout, Low Quiescent Current, Low
Drop-Out Regulator,” J. Solid-State Circuits, vol. 33, pp.36-44, Jan 1998.
[32] Y. L. Shi Yufeng. and L. L. Zheng Zengyu, “CMOS Bandgap Voltage Reference
With 1.8-V Power Supply,” in Proc. IEEE ICASIC, 2003, pp. 611-614.
[33] C. L. Chen, W. J. Huang and S. I. Liu, “CMOS Low Dropout Regulator With
Dynamic Zero Compensation,” in Proc. IEEE EL, 2007.
[34] C. C. Yu, W. P. Wang and B. D. Liu, “A New Level Converter for Low-Power
Applications,” in Proc. IEEE ISCAS, 2001, pp. 113-116.
[35] S.H. Kulkarni, D. Sylvester, “High Performance Level Conversion for Dual-VDD
Design,” in Proc. IEEE TVLSI, vol 12, pp. 926-936, Sept. 2004.
[36] D. A. Johns and K. Martin, Analog Integrated Circuit Design. Toronto: Wisely,
1997.
[37] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. New York : Oxford,
1987.
[38] D. Soudris, C. Piguet, and C. Goutis, Designing CMOS Circuits For Low Power.
Hardcover, 2004.
[39] Y. Kanno, H. Mizuno, N. Oodaira, Y. Yasu, and K. Yanagisawa, “μI/O Architecture
For 0.13-μm Wide-Voltage-Range System-On-A-Package (SoP) Designs,” in Proc.
IEEE VLSIC Symp, 2002, pp.168–169.
[40] Y. Kanno, H. Mizuno, K. Tanaka, T. Watanabe, “Level Converters With High
Immunity To Power-Supply Bouncing For High-Speed Sub-1-V LSIs,” in Proc.
IEEE VLSIC Symp, 2000, pp.202 – 203.
[41] P. Y. Chin, C. C. Yu, “Voltage Level Converter Circuit Design with Low Power Consumption,” in Proc. IEEE ICASIC, 2005, pp. 309-310.
[42] K. H. Koo, J. H. Seo, M. L. Ko, J. W. Kim, “A New Level-Up Shifter for High
Speed and WideRange Interface in Ultra Deep Sub-Micron,” in Proc. IEEE ISCAS,
2005, pp. 1063-1065.
[43] 張裕睿,具有PVT容忍能力之CMOS電壓準位調升電路,國立中正大學電機工
程研究所碩士論文,民國九十四年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top