跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/02/24 15:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高鼎皓
研究生(外文):Ding-hau Gau
論文名稱:考慮目標物移動紀錄之無線感測網路之睡眠節能策略
論文名稱(外文):Tracking-history-based Sleeping Policies for Wireless Sensor Networks
指導教授:高榮鴻高榮鴻引用關係
指導教授(外文):Rung-Hung Gau
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:42
中文關鍵詞:追蹤錯誤睡眠時間馬可夫鍊
外文關鍵詞:sleep timeMarkov chaintrack errors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
無線感測網路可用來追蹤單一會移動的目標物。每個無線感測器(sensor)只有有限的電量以及有限的偵測範圍。因此,為了節省電量,感測器會在適當的時候進入睡眠模式(sleep mode)。進入睡眠模式的感測器無法與其他感測器通訊。當目標物移動到處於睡眠模式的感測器之偵測範圍時,感測器也無法偵測到目標物,而產生追蹤錯誤(tracking errors)。因此,我們需要根據已知的目標物的相關資訊來決定感測器之睡眠時間。考慮能量消耗及追蹤錯誤間的折衷,我們提出根據目標物移動歷史記錄來決定感測器的睡眠時間的方案,使用電腦模擬來評估比較我們所提出的方案的合理性。
A wireless sensor network can be used to track an object. Every sensor has limited energy and detecting range. In order to conserve energy, sensors may be put into sleeping mode. A sensor in the sleeping mode can not communicate with other sensors or detect objects. When the object moves to the sensing range of a sleeping sensor, a tracking error occurs. To minimize the tracking error subject to an constraint on energy consumption, we should determine the sleeping schedules of sensors based on the mobility pattern of the object. We propose determining the sleeping schedules based on the observation history of the moving object. We use computer simulation to justify the usage of the proposed approach.
誌謝....................................................................... I
中文摘要.................................................................. II
Abstract ................................................................. III
目錄...................................................................... IV
圖目錄..................................................................... V
第一章 緒論 ............................................................... 1
1.1 簡介.............................................................................................................................. 1
1.2 研究動機........................................................................................................................ 2
第二章 研究背景及相關研究................................................. 3
2.1 Sparse Topology and Energy Management (STEM)............................................... 3
2.2 Distributed Target Classification ............................................................................... 4
2.3 Virtual Patrol .............................................................................................................. 6
2.4 Partially observable Markov decision process.......................................................... 7
第三章 根據目標物移動紀錄決定睡眠策略.................................... 12
3.1 系統架構 ..................................................................................................................... 12
3.2 利用 POMDP 追蹤目標物............................................................................................. 15
3.3 根據目標物移動記錄設定睡眠時間 ......................................................................... 19
第四章 模擬數據及結果.................................................... 28
4.1 模擬環境變數............................................................................................................ 28
第五章 結論.............................................................. 32
六、參考文獻.............................................................. 33
[1] Jason A. Fuemmeler and Venugopal V. Veeravalli, “Smart Sleeping Policies for Energy Efficient Tracking in Sensor Networks” Signal Processing, IEEE Transactions on Volume 56, Issue 5, May 2008 Page(s):2091 - 2101

[2] R. R. Brooks, P. Ramanathan, and A. M. Sayeed, “Distributed target classification and tracking in sensor networks,” Proc. IEEE, vol. 91, no.8, pp. 1163–1171, Aug. 2003.

[3] S. B. Balasubramanian et al., “Distributed and collaborative tracking for energy-constrained ad hoc wireless sensor networks,” IEEE Wireless Commun. Networking Conf. (WCNC), vol. 3, pp. 1732–1737, 2004.

[4] R. Gupta and S. R. Das, “Tracking moving targets in a smart sensor network,” in Proc. 58th IEEE Vehicular Technology Conf., Oct. 2003, vol. 5, pp. 3035–3039.

[5] H. Yang and B. Sikdar, “A protocol for tracking mobile targets using sensor networks,” in Proc. IEEE Int. Workshop Sensor Network Protocols Applications, 2003, pp. 71–81.

[6] Y. Xu, J. Winter, and W.-C. Lee, “Prediction-based strategies for energy saving in object tracking sensor networks,” in Proc. 2004 IEEE Int. Conf. Mobile Data Management, 2004, pp. 346–357.

[7] L. Yang et al., “A multi-modality framework for energy efficient tracking in large scale wireless sensor networks,” in Proc. 2006 IEEE Int. Conf. Networking, Sensing Control, Apr. 2006, pp. 916–921.

[8] C. Gui and P. Mohapatra, “Power conservation and quality of surveillance in target tracking sensor networks,” in Proc. ACM Int. Conf. Mobile Comput. Networking (MOBICOM), 2004, pp. 129–143.

[9] C. Gui and P. Mohapatra, “Virtual patrol: A new power conservation design for surveillance using sensor networks,” in Proc. IEEE/ACM Information Processing in Sensor Networks (IPSN), 2005, pp. 246–253.


[10] N. Vasanthi and S. Annadurai, “Energy saving schedule for target tracking sensor networks to maximize the network lifetime,” in Proc. 1st Int. Conf. Communication System Software Middleware, Jan. 2006, pp. 1–8

[11] D. Bertsekas, Dynamic Programming. Upper Saddle River, NJ: Prentice-
Hall, 1987.

[12] D. Aberdeen, “A (revised) survey of approximate methods for solving POMDP’s,” Tech. Rep., 2003.

[13] M. Littman, A. Cassandra, and L. Kaelbling, “Learning policies for partially observable environments: Scaling up,” in Proc. 12th Int. Conf. Machine Learning, 1995, pp. 362–370.

[14] R. Horn and C. Johnson, Matrix Analysis. New York: Cambridge Univ. Press, 1985

[15] Xi-Ren Cao, Xianping Guo , “Partially observable Markov decision processes with reward information,” Decision and Control, 2004. CDC. 43rd IEEE Conference on Volume 4, 14-17 Dec. 2004 Page(s):4393 - 4398 Vol.4

[16] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan,” Energy-efficient communication protocol for wireless microsensor networks.” In IEEE Proceedings of the Hawaii International Conference on System Sciences (HICSS), January 2000

[17] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava, “Optimizing Sensor Networks in the Energy-Latency-Density Design Space,” IEEE Trans. Mobile Computing, pp. 70-80, Jan.-Mar. 2002.

[18] L. Clare, G. Pottie, and J. Agre, ªSelf-Organizing Distributed Sensor Networks,” SPIE ─The Int''l Soc. Optical Eng., pp. 229-237, Apr. 1999

[19] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava, “Optimizing Sensor Networks in the Energy-Latency-Density Design Space,” IEEE Trans. Mobile Computing, pp. 70-80, Jan.-Mar. 2002.


[20] C. Guo, L.C. Zhong, and J.M. Rabaey, “Low Power Distributed MAC for Ad Hoc Sensor Radio Networks,” Proc. IEEE GlobeCom Conf., Nov. 2001.

[21] E. Shih, P. Bahl, and M.J. Sinclair, “Wake on Wireless: An Event Driven Energy Saving Strategy for Battery Operated Devices,” Proc. ACM MobiCom Conf., Sept. 2002

[22] C.F. Chiasserini and R.R. Rao, “Combining Paging with Dynamic Power Management,” Proc. IEEE Infocom Conf., Apr. 2001

[23] W. Ye, J. Heidemann, and D. Estrin, “An Energy-Efficient MAC Protocol for Wireless Sensor Networks,” Proc. IEEE Infocom Conf., June 2002

[24] “STEM: Topology Management for Energy Efficient Sensor Networks,” Proc. IEEE Aerospace Conf., Mar. 2002.

[25] Y. Xu, J. Heidemann, and D. Estrin, “Adaptive Energy-Conserving Routing for Multihop Ad Hoc Networks,” Technical Report 527, Information Sciences Inst., Univ. Southern California, 2000

[26] M.L. Sichitiu, “Cross-Layer Scheduling for Power Efficiency in Wireless Sensor Networks,” Proc. IEEE Infocom Conf., Mar. 2004.


[27] X. Yang and N.H. Vaidya, “A Wakeup Scheme for Sensor Networks: Achieving Balance between Energy Saving and Endto- End Delay,” Proc. IEEE Real-Time and Embedded Technology and Applications Symp. (RTAS), May 20

[28] A. Woo and D.E. Culler, “A Transmission Control Scheme for Media Access in Sensor Networks,” Proc. ACM MobiCom Conf.,July 2001

[29] B. Chen, K. Jamieson, and H. Balakrishnan. Span: An energy efficient coordination algorithm for topology maintenance in ad hoc wireless network. In ACM Mobicom, 2001
[30] K. Chakrabarty, S.S. Iyengar, H. Qi, and E. Cho. Grid coverage for surveillance and target location in distributed sensor networks. IEEE Transaction on Computers, 51(12), 2002

[31] J. Kittler, M. Hatef, R. Duin, and J. Matas, “On combining classifiers,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, pp. 226–238, Mar. 1998
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top