(3.238.130.97) 您好!臺灣時間:2021/05/14 17:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇國樑
研究生(外文):Guo-Liang Su
論文名稱:針對含有非匹配干擾系統之適應性區塊步階迴歸控制器設計
論文名稱(外文):Design of Adaptive Block Backstepping Controllers for Systems with Mismatched Perturbations
指導教授:鄭志強鄭志強引用關係
指導教授(外文):Chih-Chiang Cheng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:82
中文關鍵詞:虛擬輸入控制器非匹配雜訊適應性區塊步階迴歸控制器
外文關鍵詞:virtual input controllermismatched perturbationsadaptive block backstepping controller
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基於李亞普諾夫穩定度理論 (Lyapunov Theorem),在本論文中利用適應性步階迴歸技術針對含有非匹配雜訊之多輸入系統設計適應性區塊步階迴歸控制器。在設計的過程中,根據受控體的區塊個數(m個),在前m-1個區塊中,每個區塊分別設計虛擬輸入控制器,最後,在第m個區塊設計強健控制器。在虛擬輸入和強健控制器中,加入適應增益來估測一些未知干擾的上界常數,如此一來,系統之非匹配雜訊的上界資訊即可不必事先知道,而且能獲得漸進穩定的特性。最後,本論文提供一個數值範例及一個實際應用的例子,以驗證本控制器的可行性。
Based on the Lyapunov stability theorem, a design methodology of adaptive block backstepping controller is proposed in this thesis for a class of multi-input systems with mismatched perturbations to solve regulation problems. According to the number of block (m) in the plant to be controlled, m-1 virtual input controllers are designed from the first block to the (m-1)th block. Then the proposed robust controller is designed from the last block. Adaptive mechanisms are employed in each of the virtual input controllers as well as the robust controller, so that the knowledge of the least upper bounds of mismatched perturbations is not required. The resultant control system can achieve asymptotic stability. Finally, a numerical example and a practical example are given for demonstrating the feasibility of the proposed control scheme.
Abstract i
List of Figures iv
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Brief Sketch of the Contents . . . . . . . . . . . . . . . . . . . 3
Chapter 2 Design of Adaptive Backstepping Controllers 4
2.1 System Descriptions and Problem Formulations . . . . . . . . . 4
2.2 Design of Adaptive Backstepping Controllers . . . . . . . . . . 5
Chapter 3 Numerical examples and Simulations 24
3.1 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Practical Application . . . . . . . . . . . . . . . . . . . . . . . 26
Chapter 4 Conclusions 51
References 51
Appendix A 56
Appendix B 58
Appendix C 60
Appendix D 64
Appendix E 66
Appendix F 69
[1] V. I. Utkin, “Variable structure systems with sliding modes”, IEEE Trans.
Automat. Contr., Vol. 22, No.1, pp. 212 - 222, 1977.
[2] W. J. Wang, G. H. Wu, and D. C. Yang, “Variable structure control design
for uncertain discrete-time systems”, IEEE Trans. Automat. Contr., Vol. 39,
No.1, pp.99 - 102, 1994.
[3] R. A. DeCarlo, S. H. Zak, and G. P. Mattews, “Variable structure control of
nonlinear multivariable systems: a tutorial,” Proc. of IEEE, Vol. 76, No. 3,
pp. 212 - 232, 1988.
[4] M. L. Chan, C. W. Tao, and T. T. Lee, “Sliding mode controller for linear
systems with mismatched time-varying uncertainties,” Journal of the
Franklin Institute, Vol. 337, pp. 105-115, 2000.
[5] C. W. Tao, M. L. Chan, and T. T. Lee, “Adaptive fuzzy sliding mode
controller for linear systems with mismatched time-varying uncertainties,”
IEEE Trans. on Systems, Man, and Cybernetics V Part B: Cybernetics, ,
Vol. 33, No. 2, pp. 283-294, 2003.
[6] H. H. Choi, “LMI-Based sliding-mode observer design method,” IEE Proc.
Control Theory Appl., Vol. 152, No. 1, pp. 113 - 155, 2005.
[7] H. H. Choi, “LMI-Based sliding surface design for integral sliding mode
control of mismatched uncertain systems,” IEEE Trans. Automat. Contr.,
Vol. 52, No. 4, pp. 736 - 742, 2007.
[8] H. K. Khalil, Nonlinear Control, Prentice-Hall, New Jersey, 1996.
[9] Y. Zhang, B. Fidan, and P. Ioannou, “Backstepping control of linear timevarying
systems with known and unknown parameters,” IEEE Transactions
on Automatic Control, Vol. 48, No. 11, pp. 1908-1925, 2003.
[10] L. Praly, “Asymptotic stabilization via output feedback for lower triangular
systems with output dependent incremental rate,” IEEE Transactions on
Automatic Control, Vol. 48, No. 6, pp. 1103-1108, 2003.
[11] J. Zhou, C.Wen, and Y. Zhang, “Adaptive backstepping control of a class of
uncertain nonlinear systems with unknown backlash-like hysteresis,” IEEE
Transactions on Automatic Control, Vol. 49, No. 10, pp. 1751-1757, 2004.
[12] D. Karagiannis, Z. P. Jiang, R. Ortega, and A. Astolfi, “Output-feedback
stabilization of a class of uncertain non-minimum-phase nonlinear systems,”
Automatica, Vol. 41, pp. 1609-1615, 2005.
[13] C. Yang, S. S. Ge, and T. H. Lee, “Output feedback adaptive control of a
class of nonlinear discrete-time systems with unknown control directions,”
Automatica, pp. 1-7, 2007.
[14] X. Tang, G. Tao, and S. M. Joshi, “Virtual grouping based adaptive actuator
failure compensation for MIMO nonlinear systems,” IEEE Transactions on
Automatic Control, Vol. 50, No. 11, pp. 1775-1780, 2005.
[15] B. Chen and X. Liu, “Fuzzy approximate disturbance decoupling of MIMO
nonlinear systems by backstepping and application to chemical processes,”
IEEE Transactions on Fuzzy systems, Vol. 13, No. 6, pp. 832-847, 2005.
[16] Y. Zhang, S. Li, and Q. Zhu, “Backstepping-enhanced decentralised PID
control for MIMO processes with an experimental study,” IET Proceedings-
Control Theory and Applications, Vol. 1, pp. 704-712, 2007.
[17] J. Zhang, S. S. Ge, and T. H. Lee, “Output feedback control of a class
of discrete MIMO nonlinear systems with triangular form inputs,” IEEE
Transactions on neural networks, Vol. 16, No. 6, pp. 1491-1503, 2005.
[18] B. Chen, X. Liu, and S. Tong, “Adaptive fuzzy output tracking control of
MIMO nonlinear uncertain systems,” IEEE Transactions on Fuzzy Systems,
Vol. 15, No. 2, pp. 287-300, 2007.
[19] Z. Cai, M. S. Queiroz, and D. Dawson, “Robust adaptive asymptotic tracking
of nonlinear systems with additive disturbance,” IEEE Transactions on
Automatic Control, Vol. 51, No. 3, pp. 524-529, 2006.
[20] Y. Wu and Y. Zhou, “Output feedback control for multi-input non-linear
systems with unknown sign of the high frequency gain matrix,” International
Journal of Control, Vol. 77, No. 1, pp. 9-18, 2004.
[21] W. Lin and C. Qian, “Semi-global robust stabilization of multi-input nonlinear
systems by partial state and dynamic output feedback,” Automatica,
Vol. 37, pp. 1093-1101, 2001.
[22] X. Liu, A. Jutan, and S. Rohani, “Almost disturbance decoupling of multiinput
nonlinear systems and application to chemical processes,” Automatica,
Vol. 40, pp. 465-471, 2004.
[23] B. Yao and M. Tomizuka, “Adaptive robust control of multi-input nonlinear
systems in semi-strict feedback forms,” Automatica, Vol. 37, pp. 1305-
1321, 2001.
[24] X. Liu, G.. Gu, and K. Zhou, “Robust stabilization of multi-input nonlinear
systems by backstepping,” Automatica, Vol. 35, pp. 987-992, 1999.
[25] J. Y. Hung, W Gao, and J. C. Hung, “Variable structure control: a survey,”
IEEE Transactions on Industrial Electronic , Vol. 40, pp. 2-2, 1993.
[26] Terasoft, Terasoft Electro-Mechanical Engineering Control System , Terasoft,
pp. 59-73, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top