跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/02/27 05:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱奕嘉
研究生(外文):Yi-chia Chiu
論文名稱:針對具有非匹配式時間延遲干擾系統之調適順滑面設計
論文名稱(外文):Design of Sliding Surfaces for Systems with Mismatched Delayed Perturbations
指導教授:鄭志強鄭志強引用關係
指導教授(外文):Chih-Chiang Cheng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:87
中文關鍵詞:漸近穩定時間延遲非匹配干擾
外文關鍵詞:asymptotical stabilitymismatched perturbationstime-delay
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文基於李亞普諾夫理論(Lyapunov Theorem),針對具有非匹配時間延遲干擾系統提出一個順滑平面設計方法。利用調適機制應用在控制器及順滑面的方法,當系統處於順滑模態時,不但可以有效壓制非匹配的干擾,而且擾動的上界資訊就能不需事先知道。首先為了穩定降階系統(reduced-order system)根據系統設計含有虛擬控制器的順滑面,提出的控制法則所需的順滑模態的個數,由系統的維度和輸入個數之間的關係來決定。下一步是設計控制器使得系統軌跡在有限的時間內進入順滑面,當系統進入順滑模態之後不僅能有效抑制非匹配式擾動對於受授控系統之影響,且可以達到漸進穩定。最後,本論文提供數值範例及實際應用以驗證所提出的控制器的可行性。
Based on the Lyapunov stability theorem, an adaptive sliding mode control scheme is proposed in this thesis for a class of systems with mismatched state-delayed perturbations to solve regulation problems. The main idea is that some adaptive mechanisms are embedded both in the sliding surfaces and in the controllers, so that not only the mismatched perturbations are suppressed during the sliding mode, but also the information of upper bound of perturbations is not required. The sliding surface functions are firstly designed through the usage of designed pseudo controllers, which is capable of stabilizing the reduced-order systems. The number of the sliding surface functions required by the proposed control scheme depends on the relationship between systems''s dimension and number of inputs. The second step is to design the controllers so that the trajectories of the controlled system are able to reach sliding surface in a finite time. Once the controlled system enters the sliding mode, the asymptotical stability is guaranteed. Two numerical examples and one practical experiment are given for demonstrating the feasibility of the proposed control scheme.
Contents
Abstract i
List of Figures iv
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Brief Sketch of the Contents 3
Chapter 2 Design of Controllers for time-delay Systems 4
2.1 System Descriptions and Problem Formulations 4
2.2 Design of Sliding Surface : n <= 2m 6
2.3 Design of Adaptive Sliding Mode Controllers: n <= 2m 12
2.4 Design of Adaptive Sliding Mode Controllers: n > 2m 17
2.5 Stability Analysis: n > 2m 28
Chapter 3 Examples and Applications 46
3.1 Simulation of the Case n <= 2m 46
3.2 Simulation of the Case n > 2m 49
3.3 Practical Application 51
ii
Chapter 4 Conclusions 72
References 73
[1] H. Wu, “Adaptive Stabilizing State Feedback Controllers of Uncertain Dynamical Systems with Multiple Time Delays,” IEEE Trans. Automat.
Contr., Vol. 45, No. 9, pp. 1697 - 1701; 2000.
[2] K. K. Shyu, W. J. Liu, and K. C. Hsu, “Design of large-scale time-delayed systems with dead-zone input via variable structure control,” Automatica., Vol. 41, pp. 1239 - 1246; 2005.
[3] H. T. Yau and J. J. Yan. (2007) “Robust decentralized adaptive control for uncertain large-scale delayed systems with input nonlinearities,” Chaos, Solitons and Fractals., Available: www.elsevier.com/locate/chaos.
[4] I. O. Sa, “Decentralized stabilization of large scale systems with multiple delays in the interconnections,” Int. J. Control., Vol. 73, No. 13, pp. 1213- 1223; 2000.
[5] M. L. Yau and J. J. Yan, “Decentralized model-reference adaptive control for a class of uncertain large-scale time-varying delayed systems with series nonlinearities,” Chaos, Solitons and Fractals., Vol. 33, pp. 1558 - 1568; 2007.
[6] H. Wu, “Adaptive Robust Tracking and Model Following of Uncertain Dynamical Systems With Multiple Time Delays,” IEEE Trans. Automat. Contr., Vol. 49, No. 4, pp. 611 - 616; 2004.
[7] C. Hua, G. Feng, and X. Guan, “Robust Controller Design of a class of nonlinear Time Delay Systems via Backstepping method, Automatica.,Vol. 44, pp. 567 - 573; 2008.
[8] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Trans. Automat. Contr., Vol. 22, No. 1, pp. 212 - 222; 1977.
[9] Y. Chang and C. C. Cheng, “Design of adaptive sliding surfaces for systems with mismatched perturbations to achieve asymptotical stability,” IEE Proc. Control Theory and Appl., Vol. 1, pp. 417 - 421; 2007.
[10] R. A. DeCarlo, S. H. Zak, and G. P. Mattews, “Variable structure control of nonlinear multivariable systems: a tutorial,” Proc. of IEEE, Vol. 76, No. 3, pp. 212 - 232; 1988.
[11] J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: a survey,” IEEE Trans. Industrial Electronic, Vol. 40, No. 1, pp. 2 - 22; 1993.
[12] M. L. Chan, C. W. Tao, and T. T. Lee, “Sliding mode controller for linear systems with mismatched time-varying uncertainties,” Journal of the Franklin Institute, Vol. 337, pp. 105 - 115; 2000.
[13] C. W. Tao, M. L. Chan, and T. T. Lee, “Adaptive fuzzy sliding mode controller for linear systems with mismatched time-varying uncertainties,” IEEE Trans. on Systems, Man, and Cybernetics - Part B: Cybernetics , Vol. 33, No. 2, pp. 283 - 294; 2003.
74
[14] C. W. Tao, J. S. Taur, and M. L. Chan, “Adaptive fuzzy terminal sliding mode controller for linear systems with mismatched time-vary uncertainties,” IEEE Trans. on Systems, Man, and Cybernetics - Part B: Cybernetics , Vol. 34, No. 1, pp. 255 - 262; 2004.
[15] C. C. Wen and C. C. Cheng, “Design of sliding surface for mismatched uncertain systems to achieve asymptotical stability” Journal of the Franklin Institute, Vol. 345, pp. 926 - 941; 2008.
[16] Y. Chang and C. C. Cheng, “Adaptive sliding mode control for plants with mismatched perturbations to achieve asymptotical stabiility,” International Juornal of Robust and Nonlinear Control., Vol. 17, pp. 880 - 896; 2007.
[17] D. Karagiannis and A. Astolfi, “Nonlinear adaptive control of system in feedback form: An alternative to adaptive backstepping,” Systems Control Letters, Vol. 57, pp. 733 - 739; 2008.
[18] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinera and Adaptive Control Design, John Wiley & Sons: New Jersey, 1995.
[19] K. K. Shyu, Y.W. Tsai, and C. K. Lai, “ Stability regions estimation for mismatched uncertain variarble structure systems with bounded controllers,” Electronics Letters, Vol. 35, No. 16, pp. 1388 - 1390; 1999.
[20] H. H. Choi, “Variable structure output feedback control design for a class of uncertain dynamic systems,” Automatica, Vol. 38, No. 2, pp. 335 - 341; 2002.
75
[21] K. K. Shyu, Y. W. Tsai, and C. K. Lai, “A dynamic output feedback controllers for mismatched uncertain structure systems,” Automatica, Vol. 37, No. 5, pp. 775 - 779; 2001.
[22] C. M. Kwan, “Sliding mode control of linear systems with mismatched uncertainties,” Automatica, Vol. 31, pp. 303 - 370; 1995.
[23] G. Tao, Adaptive Control Design and Analysis, John Wiley & Sons: New Jersey, 2003.
[24] Terasoft, Terasoft Electro-Mechanical Engineering Control System , Terasoft, pp. 59 - 73; 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊