跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/20 16:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱啟丞
研究生(外文):Chi-cheng Chiu
論文名稱:針對非匹配擾動系統含有不可量測狀態之調適順滑面設計
論文名稱(外文):Design of Adaptive Sliding Surfaces for Mismatch Perturbed Systems with Unmeasurable States
指導教授:鄭志強鄭志強引用關係
指導教授(外文):Chih-Chiang Cheng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:72
中文關鍵詞:觀測器漸進穩定非匹配干擾調適順滑面
外文關鍵詞:observers.mismatched perturbationsadaptive sliding mode controlasymptotical stability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文基於李亞普諾夫之穩定性定理(Lyapunov Theorem),針對具有匹配式與非匹配式擾動系統,且含有不可量測狀態,提出一個適應性可變結構觀測器及控制器處理系統校準問題。首先根據系統設計順滑模態觀測器,用來估測不可量測狀態,下一步設計控制器使得系統軌跡在有限時間內進入順滑面,當系統進入順滑模態之後有效抑制非匹配擾動對系統的影響,且可以達到漸進穩定性能之要求。為了抑制非匹配擾動對系統的影響,將調適機制運用在順滑面及控制器的設計中,致使控制器自動調整未知擾動的上界,所以擾動的上界資訊就不需事先知道,還可使受控系統於有限時間內達到迫近模態。最後,本論文提供一個數值範例及實際裝置的範例以檢驗所提出控制器的可行性。
Based on the Lyapunov stability theorem, an adaptive variable structure observer and a controller are proposed in this thesis for a class of mismatched perturbed multi-input multi-output (MIMO) dynamic systems with unmeasurable states to solve regulation and tracking problems. In order to estimate the unmeasurable states, a design methodology of variable structure observers is presented first. Then the controller is designed so that the trajectories of the controlled systems are able to reach sliding surface in a finite time. Some adaptive mechanisms are embedded in the sliding surface function and sliding mode controllers, so that not only the mismatched perturbations are suppressed effectively during the sliding mode, but also the information of upper bounds of some perturbations are not required. When the controlled system is the sliding mode, the stability or asymptotical stability is guaranteed. A numerical example and a practical example are given to demonstrate the feasibility of the proposed design technique.
Abstract ...................................i
List of Figures .......................iv
1 Introduction ........................1
1.1 Brief Sketch of the Contents . . . . . . . . . . . . . . . . . . . 3
2 Design of Robust Variable Structure Observers and Controllers for
Mismatched Uncertain Systems to Achieve Asymptotical Stability ...............................5
2.1 System Descriptions and Problem Formulations . . . . . . . . . 5
2.2 Design of the Robust Observers and Controllers . . . . . . . . . 8
2.3 Stability Analysis of Estimation Errors . . . . . . . . . . . . . . 12
2.4 Analysis of Overall System’s Stability . . . . . . . . . . . . . . 20
3 Design of model reference Adaptive sliding mode tracking controllers
and observer for mismatched uncertain systems ...26
4 Computer simulations ..........................................33
4.1 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Practical Example . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 TrackingExample . . . . . . . . . . . . . . . . . . . . . . . . . 38
5 Conclusions and FutureWorks ...........................56
References .............................................................56
[1] Hung JY, Gao W, Hung JC. Variable structure control: A Survey. IEEE Trans. Industrial Electronic 1993; 40: 2 - 22.
[2] Wang WJ, Wu GH, Yang DC. Variable structure control design for uncertain discrete-time systems. IEEE Trans. Automat. Contr. 1994; 39:99 -102.
[3] Edwards C, Spurgeon SK. Sliding Mode Control: Theory and Applications, Padstow: Taylor and Francis Ltd, 1998.
[4] Hu J, Chu J, Su H. SMVSC for a class of time-delay uncertain systems with
mismatching uncertainties. IEE Proc. - Control Theory and Appl. 2000; 147: 687 - 693.
[5] Huang AC, Chen YC. Adaptive multiple-surface sliding control for nonautonomous systems with mismatched uncertainties. Automatica 2004; 40:1939 - 1945.
[6] Sam YM, Osman JHS, Ghani MRA. A class of proportional-integral sliding mode control with application to achieve suspension system. Systems and Control Letters 2004; 51: 217 - 223.
[7] Choi HH. Variable structure control of dynamical systems with mismatchednorm-bounded uncertainties: an LMI approach. Int. J. Contr. 2001; 74: 1324 - 1334.
[8] Tao CW, Chan ML, Lee TT. Adaptive fuzzy terminal sliding mode controller for linear systems with mismatched time-varying uncertainties. IEEE Trans. Systems, Man, and Cybernetics-Part B 2003; 33: 283 - 293.
[9] Cheng CC, Chien SH. Adaptive sliding mode controller design based on T-S fuzzy system models. Automatica 2006; 42: 1005 -1010.
[10] Chan ML, TaoCW, Lee TT. Sliding mode controller for linear systems with mismatched time-varying uncertainties. J. Franklin Institute 2000; 337: 105 - 115.
[11] Zhihong M, Yu XH. Terminal sliding mode control of MIMO linear systems. IEEE Trans. Automat. Contr. 1997; 44: 1065 - 1070.
[12] Tao, CW, Taur JS, Chan ML. Adaptive fuzzy terminal sliding mode controllerfor linear systems with mismatched time-varying uncertainties. IEEE Trans. Systems, Man, and Cybernetics-Part B 2004; 34: 255 -262.
[13] Kwan CM. Sliding mode control of linear systems with mismatched uncertainties. Automatica 1995; 31: 303 - 307.
[14] Chang Y, Cheng CC. Adaptive sliding mode control for plants with mismatched perturbations to achieve asymptotical stability. International Journal of Robust and Nonlinear Control 2007; 17: 880 - 896.
[15] Chang Y, Cheng CC. Design of adaptive sliding surfaces for systems with mismatched perturbations to achieve asymptotical stability. IEE Proc. -Control Theory and Appl. 2007; 1: 417 - 421.
[16] Choi HH. An LMI-based switching surface design method for a class of mismatched uncertain systems. IEEE Trans. Automat. Contr. 2003; 48: 1634 -1638.
[17] ZHanga TP, Geb SS. Adaptive neural control ofMIMO nonlinear state timevarying delay systems with unknown dead-zones and gain signs, Automatica, 2007; 43: pp. 1021 - 1033.
[18] Choi HH. On the existence of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties. Automatica 1999; 35: 1707 - 1715.
[19] Kim KS, Park Y, Oh SH. Designing robust sliding hyperplanes for parametric uncertain systems: a Riccati approach, Automatica., 2000; 7:pp. 1041 - 1048.
[20] Thau FE. Observing the state of nonlinear dynamical systems, International Journal of control., 1973; 17 : pp. 471 - 479.
[21] Chen X, Kano H. A new state observer for perspective systems. IEEE Trans. Automat. Contr. 2002; 47: 658 - 662.
[22] Praly L. Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate. IEEE Trans. Automat. Contr. 2003; 48: 1103 - 1107.59
[23] Krishnamurthy P, Khorrami F, Chandra RS. Global high-gain-based observer and backstepping controller for generalized output-feedback canonical form. IEEE Trans. Automat. Contr. 2003; 48: 2277 - 2284.
[24] Walcott, BL, Zak SH. State obervation of nonlinear nucertain dynamical systems IEEE Transactions on automatic control. , 1987; 32: pp. 166-170.
[25] Xiong Y, Saif M. Sliding mode observer for nonlinear uncertain systems. IEEE Trans. Automat. Contr. 2001; 46: 2012 - 2017.
[26] Chen MS, Chen CH. An LTR-observer-based dynamic sliding mode control for chattering reduction. Automatica 2007; 453: 1111 - 1116.
[27] Yan XG, Edwards C. Nonlonear robust fault reconstruction and estimation using a sliding mode observer. Automatica 2007; 43: 1605 -1614.
[28] Choi HH. Variable structure output feedback control design for a class of uncertain dynamic systems, Automatica. 2002; 38: 335 - 341,
[29] Shyu KK, Tsai YW. and Lai C k, A dynamic output feedback controllers for mismatched uncertain variable structure systems, Automatic, 2001; 35: 775 - 779.
[30] Chou CH, Cheng CC. A decentralized model reference adaptive variable structure controller for large-scale time-varying delay systems. IEEE Trans. Automat. Contr. 2003; 48: 1123 - 1127.
[31] Jiang L, Wu QH. Nonlinear adaptive control via sliding-mode state and perturbation observer. IEE Proc. - Control Theory and Appl. 2002; 149: 269 - 277.
[32] Kung CC, Chen TH. Observer-based indirect adaptive fuzzy sliding modecontrol with state variable filters for unknown nonlinear dynamical systems.Fuzzy Sets and Systems 2005; 155: 292 - 308.
[33] Tao G. Adaptive control design and analysis, John Wiley and New Jersey, 2003.
[34] Slotine JJE, Li W. Applied nonlinear control, Prentice Hall, New Jersey,1991.
[35] Chen CT. Linear system Theory and Design, Third edittion, New York:Oxford University Press, Inc.,1999
[36] Hu T, Lin Z. Output regulation of linear systems with continuous feedback,IEEE, 2002; 11: pp. 1941 - 1953.
[37] Khalil, H K. Nonlinear Systems, Third Edition, Prentice Hall, New Jersey, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊