跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/29 17:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李元輝
研究生(外文):Yuan-hui Li
論文名稱:結合碳交易以價格為導向之機組排程研究
論文名稱(外文):A Study for Price-Based Unit Commitment with Carbon
指導教授:林惠民林惠民引用關係
指導教授(外文):Whei-Min Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:101
中文關鍵詞:機組排程基因演算法蟻群最佳化
外文關鍵詞:Genetic AlgorithmAnt Colony OptimizationUnit Commitment
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1885
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文提出混合基因演算法與蟻群最佳化方法(Genetic Algorithm-Ant Colony Optimization, GACO),來求解機組排程問題(Unit Commitment, UC),並將所求得的結果和文獻方法做一比較。文中應用基因演算法(Genetic Algorithm, GA)所具有的交配與突變,來強化蟻群最佳化(Ant Colony Optimization, ACO)的效能。其應用基因演算法的目的為改善螞蟻搜索的品質,因為經由費洛濃隨機所產生的解,並不能確保其為最佳解,因此藉由基因演算法讓所求得的解自身做優化,進而產生更佳的解,此不但可以增加局部搜尋的能力,還可以快速搜索到所要求的最佳解,並且提早收斂。本論文的另一個目標是研究污染排放限制在發電規劃調度的影響。這個研究目標的構想是來自於減少氣候變遷的負面影響。在實際電力市場結構中,獨立發電業者必須處理幾種複雜的問題。這些問題來自於不可預測的現貨市場價格,機組排程和交易規劃。除了找到最小成本調度及機組排程決策,並同時最大化利潤,發電業者的調度模型必須包括交易決策如現貨市場的買與賣。在本論文中提出結合碳交易及現貨市場的模型,幫助發電業者決定他們的排程可以產生最大的利潤。
In this thesis, the Hybrid Genetic Algorithm-Ant Colony Optimization (GACO) approach is presented to solve the unit commitment problem (UC), and comparison with the results obtained using literature methods. Then this thesis applied the ability of the Genetic Algorithm (GA) operated after Ant Colony Optimization (ACO) can promote the ACO efficiency. The objective of GA is to improve the searching quality of ants by optimizing themselves to generate a better result, because the ants produced randomly by pheromone process are not necessary better. This method can not only enhance the neighborhood search, but can also search the optimum solution quickly to advance convergence. The other objective of this thesis is to investigate an influence of emission constraints on generation scheduling. The motivation for this objective comes from the efforts to reduce negative trends in a climate change. In this market structure, the independent power producers have to deal with several complex issues arising from uncertainties in spot market prices, and technical constraints which need to be considered while scheduling generation and trading for the next day. In addition to finding dispatch and unit commitment decisions while maximizing its profit, their scheduling models should include trading decisions like spot-market buy and sell. The model proposed in this thesis build on the combined carbon finance and spot market formulation, and help generators in deciding on when these commitments could be beneficial.
Contents
Chinese Abstract………………………………………………...……I
Abstract..................................................................................................II
Contents…………………………………………………………...…III
List of Tables........................................................................................VI
List of Figures……………………………………………………VIII
Chapter 1 Introduction……………………………………...………….1
1.1 Motivation……………………………………………………1
1.2 Literature Review and Propose of the Thesis………………...3
1.3 Organization of the Thesis……………………………………4
Chapter 2 Carbon Finance……………..………………………...…….5
2.1 Introduction…..………………………………........................5
2.2 Sources of Carbon Finance….….………...………………….5
2.2.1Global warming by CO2…………………..…………….6
2.2.2 The Physical Impacts of Global Warming………..…….9
2.2.3 The Political Context of Global Warming…………….11
2.3 Carbon Finance in Theory and Practice……………………12
2.3.1 Three Mechanisms in the Kyoto Protocol………….…12
2.3.2 The Advantage of Using the Trading Mechanism…….14
2.3.3 The European Union Emission Trading Scheme……...15
2.3.4 National Allocation Plan for the United Kingdom
the U.K……………………………………………….17
2.3.5 Carbon Markets in the United States and Australia…..18
2.3.6 Trading Through the Clean Development Mechanism
in Dutch…………..………………………………….19
Chapter 3 The Implications of Carbon Finance on Power Markets..20
3.1 Introduction…………………………………………………20
3.2 Power Markets…...………...……………………………..…20
3.2.1 Primary Market Structures……………………………21
3.2.2 Risks and Opportunities of Carbon Finance within the
Electric Industry……………………...………………24
3.3 Problem Formulation for Generation Scheduling..…..….26
3.3.1 Traditional Unit Commitment……..…………………27
3.3.2 Problem Formulation for Traditional UC……………28
3.4 Price-Based Unit Commitment with Carbon Trading..…….31
3.4.1 Emission Function...……….….……………………..31
3.4.2 Problem Formulation for Price-Based UC with
Carbon Trading…...……….….……………………..34
Chapter 4 Ant Colony Optimization Plus Genetic Algorithm and
Application Principles…………………...………..........….37
4.1 Introduction…………………………………………………37
4.2 Foundations of Genetic Algorithms………………………...38
4.2.1 Encoding Issue………………………………………..40
4.2.2 Genetic Operators………………….………………….41
4.2.3 Selection………………………………………………44
4.3 Ant Colony Optimization Theory………...…………………46
4.3.1 Double Bridge Experiments……..……………………47
4.3.2 Implementing ACO Algorithms………………………48
4.4 The Performance of ACO plus GA………………………….50
4.4.1 Steps to Solve the Traditional UC by GACO………....53
4.4.2 Steps to Solve the Price-Based UC with Carbon
Trading by GACO…...………...……………………..56
Chapter 5 Simulations and Results………………...…………………60
5.1 Introduction……….……………………………………….60
5.2 The test of Case 1-A Simulation for Traditional UC….....61
5.2.1 A Meaningful Comparison of the Different
Algorithms…………………………………………...62
5.2.2 The Behavior of GACO…………………….………..66
5.2.3 Robustness Test……………………………………....68
5.3 The Simulations for Price-Based UC with Carbon Trading
…………….………………………………………………70
5.3.1 The Test of Case 2—Finding the Bilateral Profits….. 71
5.3.2 The Test of Case 3—Finding the Maximal Profits…...74
Chapter 6 Conclusions…………………….………..………………..85
6.1 Conclusions……………….................................................85
6.2 Prospects for the Future………………...............................86
Refference….…………………………………………………………88
[1]
Derek W.Bunn, “Modelling Prices in Competitive Electricity Markets”, John Wiley&Sons Ltd, The Atrium, Southern Gate, Chihester, West Sussex PO19 8SQ, England.
[2]
Bhattacharya, K, “Strategic bidding and generation scheduling in electricity spot-markets”, Electric Utility Deregulation and Restructuring and Power Technologies, 2000. Proceedings. DRPT 2000. International Conference on 4-7 April 2000, pp. 108 – 113.
[3]
Kockar, I, “Unit commitment for combined pool/bilateral markets with emissions trading”, Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE 20-24 July 2008, pp. 1 – 9.
[4]
S. Kuloor, G. Hope and O. Malik, “Environmentally constrained unit commitment”, IEE Proceedings - C, vol. 139, no. 2, March 1992, pp. 122-128.
[5]
S. Wang, M. Shahidehpour, D.S. Kirschen, S. Mokhtari and G. Irissari, “Short-Term Generation Scheduling with Transmission and Environmental Constraints Using an Augmented Lagrangian Relaxation”, IEEE Transactions on Power Systems, vol. 10, no. 3, August 1995, pp. 1294-1300.
[6]
T. Gjengedal, “Emission Constrained Unit Commitment (ECUC)”, IEEE Transactions on Energy Conversion, vol. 11, no. 1, March 1996, pp. 132-138
[7]
H.Y. Yamin, Q. El-Dwairi and S.M. Shahidehpour “A new approach for GenCos profit based unit commitment in day-ahead competitive electricity market considering reserve uncertainty”, international Journal on Electrical Power Energy Systems, vol. 29, no. 8, October 2007,pp. 609-616.
[8]
Y. Fu, S.M. Shahidehpour and Z. Li “Long-term Security Constrained Unit Commitment: Hybrid Dantzig-Wolfe Decomposition and Subgradient Approach”, IEEE Transactions on Power Systems, vol. 20, no. 4, November 2005, pp. 2093-2106.
[9]
Stefan Krauter, “Solar Electric Power Generation——Photovoltaic Energy Systems”, Springer-Verlag Berlin Heidelberg.
[10]
Sonia Labatt and Rodney R.White, “Carbon Finance-The Financial Implications of Climate Change”, John Wiley&Sons, Inc. 2007.
[11]
Alexander Eydeland and Krzysztof Wolyniec, “Energy and Power Risk Management”, John Wiley&Sons, Inc. 2003.
[12]
Sally Hunt, “Making Competition Work in electricity”, John Wiley&Sons, Inc. 2002.
[13]
Steven Stoft, “Power System Economics Designing Markets for Electricity”, The Institute of Electrical and Electronics Engineers, Inc., 2002.
[14]
Bavafa, M.; Navidi, N.; Monsef, H., “A new approach for Profit-Based Unit Commitment using Lagrangian relaxation combined with ant colony search algorithm”, Universities Power Engineering Conference, 2008. UPEC 2008. 43rd International 1-4 Sept. 2008 Digital Object Identifier 10.1109/UPEC. 2008.4651475, pp.1-6
[15]
G.B. Sheble and G.N. Fahd, “Unit commitment literature synopsis,” IEEE Trans. Power Systems, vol. 9, pp. 28-135, Feb. 1994.
[16]
Hadi Sadat, “Power System Analysis”, Tata McGraw-Hill Publishing, Company Limited, 2002.
[17]
Daniel Kirschen and Goran Strbac, “Fundamentals of Power System Economics”, John Wiley&Sons, Ltd. 2004.
[18]
Kockar, A.J.Conejo and J.R. McDonald, “Influence of the Emissions Trading Scheme on Market Clearing”, Submitted to Power System Computation Conference (PSCC) 2008.
[19]
EU Directives 2003/87/EC, 2004/156/EC and 2007/589/EC; available at
http://ec.europa.eu/environment/
[20]
Booker, L., Improving search in genetic algorithms, in Davis, L., editor, “Genetic algorithms and simulated annealing, Morgan Kaufmann Publishers”, San Francisco, 1987.
[21]
Eshelman, L. and J. Schaffer, “Real-coded genetic algorithms and interval-schemata, in Whitlety, L., editor”, foundations of Genetic Algorithms, vol. 2m pp 187-202, Morgan Kaufmann Publishers, San Francisco, 1993.
[22]
McCormick, W.T., P. J. Schweitzer, and T. W. White, “Problem decomposition and data reorganization by a cluster technique”, Operations Research, vol. 20, no. 5, pp.993-1009, 1972.
[23]
Michalewicz, Z., “Genetic Algorithm+Data Structure=Evolution Programs, 3rd edition”, Springer-Verlag, New York, 1996.
[24]
Walters, G. A. and D. K. Smith, “Evolutionary design algorithm for optimal layout of tree networks”, Engineering Optimization, vol. 24, pp. 261-281, 1995.
[25]
Bazaraa, M., J. Jarvis, and H. Sherali, “Linear Programming and Network Flows, 2nd edition”, Wiley, New York, 1990.
[26]
Goldberg, D., B. Korb, and K. Deb, “Messy genetic algorithms: motivation, analysis, and first results”, Complex Systems, vol. 3, pp. 493-530, 1989.
[27]
Mitsuo Gen and Runwei Cheng, “Genetic Algorithms and Engineering Optimization”, John Wiley&Sons.
[28]
Marco Dorigo and Thomas Stutzle, “Ant Colony Optimization”, Massachusetts Institute of Technology 2004.
[29]
Sum-im, T.and Ongsakul, W, “Ant colony search algorithm for unit 89
commitment”, Industrial Technology, 2003 IEEE International Conference on Volume 1, 10-12 Dec. 2003 pp.72 - 77 Vol.1.
[30]
Kazarlis, S.A., Bakirtzis, A.G., and Petridis, V.: “A genetic algorithm solution to the unit commitment problem”, IEEE Trans. on Power Systems, 1996, 1(1), pp.83-92.
[31]
Simopoulos, D.N., Kavatza, S.D., and Vournas, C.D.: “Unit Commitment by an Enhanced simulated annealing algorithm”, IEEE Trans. on Power Systems, 2006, 21(1), pp.68-76.
[32]
Sun, L., Zhang, Y., and Juang, C.: “A matrix integerd genetic algorithm to the unit commitment problem”, Electric Power Systems Research, 2006, no.7, pp.716-7286.
[33]
Damousis, I.G., Bakirtizis, A.G., and Dokopoulos, P.S.: “A solution to the unit-commitment problem using integer-coded genetic algorithm”, IEEE Trans. on Power Systems, 2004, 19(2), pp.1165-1172.
[34]
A.Y. Saber, A.Y., Senjyu, T.S., Urasaki, T.M.N., and Funabashi, T.: “Fuzz unit commitment scheduling using absolutely stochastic simulated annealing”, IEEE Trans. on Power System, 2006, 21(2), pp.955-964.
[35]
P. Attaviriyanupap, H. Kita, E. Tanaka and J. Hasegawa, “A New Profit-Based Unit Commitment Considering Power and Reserve Generating”, Power Engineering Society Winter Meeting, 2002, IEEE Volume 2, 27-31 Jan. 2002 pp.1311-1316 vol.2
[36]
Geoffrey Rothwell, Tomas Gomez, “Electricity Economics Regulation and Deregulation”, John Wiley&Sons, Ltd. 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊