(3.236.214.19) 您好!臺灣時間:2021/05/09 21:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高子育
研究生(外文):Tzu-yu Kao
論文名稱:一次變電所標準電壓訂定之研究
論文名稱(外文):Study of Standard Voltage Setting of a Primary Substation
指導教授:林惠民林惠民引用關係
指導教授(外文):Whei-Min Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:89
中文關鍵詞:標準電壓徑向基底類神經改良式粒子群演算法
外文關鍵詞:Improved Particle Swarm OptimizerRadial Basis Function Neural NetworkStandard Voltage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電力品質的穩定一直是各國電力公司所致力的目標之一,加上能源短缺,燃料成本逐年提高,如何在各方面撙節開支,需要電力公司各單位的共同努力。台電公司針對每個一次變電所之二次側電壓均有設定一組標準電壓。所謂標準電壓簡單的來說,就是一個電壓期望值的排程。一組好的標準電壓可使一次變電所轄區內各二次變電所的電壓變動降低,這可使各二次變電所主變壓器之有載分接頭切換器動作次數減少,可增加主變壓器的使用壽命並延長主變壓器的維護週期,無形之中可節省電力公司許多開銷。
本文提出一種計算標準電壓的方式,改善以往只能用經驗法則訂定之缺點。首先以實際負載與電壓資料建置類神經網路模型,並使用改良式粒子群演算法尋找徑向基底類神經網路的參數,建置出最佳網路模型。接著再套用前述之最佳網路,同樣使用改良式粒子群演算法進行標準電壓的時間設定及訂定值排程最佳化,最後以台電台南一次變電所轄區系統作為測試實例,分別訂定冬季及夏季標準電壓,驗證本文所提方法之可行性。
Stability of the power quality is one of the objectives that power companies always try to assure. With energy shortage and the increases of fuel cost over years, reduction of expenses in all areas is another effort of the power company. Dealing with the above problems, Taiwan Power Company sets up a standard voltage for secondary side of each primary substation. Standard voltage is a commitment of expected 69kV primary substation bus voltage. A proper setting of the standard voltage can reduce voltage variation, in the secondary substation, and reduce the operation frequencies of the on load tap changer. Besides, it can prolong the service life and the maintenance cycle, and it can also reduce maintenance cost of each main transformer.
This study proposes a method to calculate the standard voltage to improve the shortcomings that the voltage used to be set up with experience rule. The load and voltage data were used to build a neural network model. Improved particle swarm optimizer was used to find the parameters of the radial basis function neural network in order to build an efficient network. This network uses improved particle swarm optimizer again to the standard voltage. The proposed approach has been verified by the comparison of winter and summer standard voltages on the Tainan primary substation of taipower with accurate results.
中文摘要…………………………………I
英文摘要…………………………………II
目錄………………………………………III
圖目錄……………………………………VI
表目錄…………………………………VIII
第一章 緒論……………………………1
1-1 研究動機與目的………………………1
1-2 研究背景與方法………………………2
1-3 論文架構及概要………………………3
第二章 電力系統調度控制及電壓控制原理…………5
2-1 電力系統調度控制………………………………5
2-1-1 電力系統架構概述……………………………5
2-1-2 電力系統調度控制……………………………8
2-1-3 電力調度的基本要求…………………………11
2-2 電壓控制與變電所運轉方式…………………16
2-2-1 電壓控制…………………………………16
2-2-2 變電所的運轉方式…………………………18
第三章 類神經網路之理論基礎……………………25
3-1 簡介……………………………………………25
3-2 神經網路的模型………………………………25
3-3 倒傳遞類神經網路原理及架構………………29
3-3-1 倒傳遞類神經網路原理……………………29
3-3-2 倒傳遞類神經網路之架構…………………29
3-4 徑向基底類神經網路原理及架構……………33
3-4-1 徑向基底類神經網路原理…………………33
3-4-2 徑向基底類神經網路之架構………………33
第四章 設計粒子群演算法結合類神經網路之標準電壓設定……36
4-1 簡介……………………………………………36
4-2 傳統粒子群演算法……………………………37
4-3 改良式粒子群演算法…………………………40
4-4 結合粒子群演算法之類神經網路設計………42
4-5 使用粒子群演算法之標準電壓設定…………46
第五章 模擬結果與討論…………………………49
5-1 最佳類神經網路建構…………………………49
5-1-1 使用PSO 與改良式PSO 之BPNN建模比較……………50
5-1-2 使用PSO 與改良式PSO 之RBFNN 建模比較…………52
5-1-3 結論……………………………………54
5-2 標準電壓設定值模擬………………………56
5-2-1 使用PSO與改良式PSO 之冬季標準電壓設定比較………56
5-2-2 使用PSO 與改良式PSO 之夏季標準電壓設定比較………63
5-2-3 結論………………………………………70
第六章 結論與未來研究方向……………………71
6-1 結論……………………………………………71
6-2 未來研究方向…………………………………72
參考文獻…………………………………………73
[1] 台灣電力公司,“電力系統運轉操作章則彙編”,民國96 年6月
[2] 台灣電力公司,“變電所運轉與管理技術”,民國94 年12 月
[3] 台灣電力公司供電處,“SCADA 區域調度運轉技術”,民國94 年10 月
[4] 台灣電力公司供電處,“69kV 電力系統運用入門”,民國87年2 月
[5] 翁基振,“北港P/S 二次系統運轉電壓模擬”,台電工程月刊第541 期, pp.11-17,民國82 年9 月
[6] D. Psaltis, A. Sideris, A.A. Yamamura, “A Multilayered Neural Network Controller,” IEEE Control Systems Magazine, vol. 82, pp. 17-21,Apr. 1988.
[7] J. T. Tsai, T. K. Liu and J. H. Chou, “Hybrid Taguchi-Genetic Algorithm for Global Numerical Optimization,” IEEE Trans. Evol. Comput., vol. 8, No. 4, pp. 365-377, Aug. 2004.
[8] Dan W. Patterson, “ Artificial Neural Networks: Theory and Applications, ” Prentice Hall, 1996.
[9] 賴正穎,“應用智慧型控制器整合靜態同步串聯補償器之動態分析”,國立中山大學電機工程學系碩士論文,民國97 年6月
[10] 何承哲,“以聲訊與類神經網路為基礎之感應馬達故障診斷研究”,國立中山大學電機工程學系碩士論文,民國96 年6 月
[11] 賴怡禎,“電力自由化下以類神經網路預測區域邊際價格”,國立中山大學電機工程學系碩士論文,民國94 年6 月
[12] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,”Proc. IEEE Int. Conf. on Neural Networks, pp. 1942-1948, Perth, Australia,1995.
[13] J. Kennedy and R. C. Eberhart, Swarm Intelligence, San Mateo, CA : Morgan Kunfmann, 2001.
[14] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 240–255,Jun. 2004.
[15] K. T. Chaturvedi, M. Pandit, and L. Srivastava, “Self-organizing hierarchical particle swarm optimization for nonconvex economic dispatch,” IEEE Trans. on Power System., vol. 23, no.3, pp. 1079–1087,Aug. 2008.
[16] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm algorithm,” Proc. of IEEE Conf. on Systems, Man, and Cybernetics, pp. 4104-4109, 1997
[17] Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm optimization,” Proc. of the Seventh Annual Conference on Evolutionary Programming, IEEE Press, 1998.
[18] M. Clerc and J. Kennedy, “The particle swarm: Explosion stability and convergence in a multi-dimensional complex space,” IEEE Trans. Evol. Comput., vol. 6, no. 1, pp. 58–73, Feb. 2002.
[19] Y. Shi and R. C. Eberhart, “Fuzzy adaptive particle swarm optimization,” IEEE Int. Conf. on Evolutionary Computation, pp. 101-106, 2001.
[20] T. O. Ting , M. V. C. Rao, and C. K. Loo , “A Novel Approach for Unit Commitment Problem via an Effective Hybrid Particle Swarm Optimization,” IEEE Trans. on Power System., vol. 21,no. 1, pp. 411–418,Feb. 2006.
[21] S. Naka, T. Genji, T. Yura, and Y. Fukuyama, “A hybrid particle swarm optimization for distribution state estimation,” IEEE Trans. Power System., vol. 18, no. 1, pp. 60–68, Feb. 2003.
[22] Zwe-Lee Gaing, “Particle swarm optimization to solving the economic dispatch considering the generator constraints,” IEEE Trans. Power System., vol. 18, no. 3, pp. 1187-1195, Aug. 2003.
[23] D. N. Jeyakumar, T. Jayabarathi, and T. Raghunathan, “Particle swarm optimization for various types of economic dispatch problems,” Electrical Power and Energy Systems, vol. 28, pp.
36-42, 2006.
[24] D. Srinivasan, W. S. Ng, and A.C. Liew, “Neural-network-based signature recognition for harmonic source identification,” IEEE Trans. on Power Delivery, Vol. 21, No. 1, pp. 398-405,Jan. 2006.
[25] L. Yingwei, N. Sundararajan, and P. Saratchandran, “Performance Evaluation of a Sequential Minimal Radial Basis Function (RBF) Neural Network Learning Algorithm,” IEEE Trans. on Neural Networks, Vol. 9, No. 2, pp. 308-318,Mar. 1998.
[26] K.S. Narendra and K. Parthasarathy, “Identification and Control of Dynamical Systems Using Neural Networks”, IEEE
Transactions on Neural Networks, Vol. 1, No. 1, pp. 4-27, Mar. 1990.
[27] M. Angeles Moreno, Julio Usaola. A New Balanced Harmonic Load Flow Including Nonlinear Loads Modeled With RBF Networks, IEEE Trans. Power Del., Vol.19, No.2, pp. 686-693 Apr.2004.
[28] J. Gonzalez, I. Rojas, J. Ortega, H. Pomares, F. J. Fernandz, and A. F. Diaz, “Multiobjective evolutionary optimization of the size,shaple, and position parameters of radial basis function networks
for function approximation,”IEEE Trans. Neural Networks, vol. 14, no. 6, pp.1478-1495, Nov. 2003.
[29] 林惠民、涂嘉勝、邵明凱、鄭富升、蔡明堂、楊進德,“應用改良式粒子群演算法於勵磁系統最佳PID 控制器參數設定”,第二十九屆電力工程研討會論文集, 南台科技大學,pp.160-164,民國97 年12 月
[30] 梁瑞勳、蔡勝任,“以強化型粒子群優法求解負載潮流最佳化問題”, 第二十九屆電力工程研討會論文集,南台科技大學,pp.68-72,民國97 年12 月
[31] 羅華強,“類神經網路-MATLAB 的應用”,清蔚科技股份有限公司,民國90 年9 月
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔