(44.192.66.171) 您好!臺灣時間:2021/05/18 00:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顏韶甫
研究生(外文):Shao-Fu Yen
論文名稱:應用於生醫無線系統之鋰電池充電電路與無電容線性穩壓器
論文名稱(外文):A Charger Circuit of Li-ion Batteries and a Capacitor-less LDO for Wireless Biomedical Systems
指導教授:王朝欽
指導教授(外文):Chua-Chin Wang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:68
中文關鍵詞:小定電流穩壓器生醫鋰電池無負載電容
外文關鍵詞:regulatorcapacitor-lessLi-ionldobiomedical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:368
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文包含兩個主題:應用於生醫無線系統之鋰電池充電電路與其無電容線性穩壓器。
第一個主題探討一使用於植入式生醫系統之鋰電池充電電路,係包含一小面積偏壓電路、具遲滯效應比較器電路、電晶體分壓電路及一顆功率電晶體,構成一個具有截止電壓及再充電電壓之鋰電池充電電路。本設計將接收一13.56 MHz 之5±0.2 V載波VDD,來對鋰電池實現小額定電流充電的目標。
第二個主題探討一因應鋰電池放電曲線之無負載電容及ESR線性穩壓器,其適用電壓範圍4.2至3.3 V。此電路包含一全CMOS偏壓電路、一誤差放大器電路及Flipped Voltage Follower,可提供一不隨負載變化的電壓輸出。本設計改善原本Flipped Voltage Follower的輸入電壓限制,以及加入相位補償,使得在無負載電容的情況下仍有良好的暫態響應及穩定度。
The thesis is composed of two topics : a charger circuit of Li-ion batteries for wireless biomedical systems and a capacitor-less low dropout regulator(LDO).

The first topic discloses a charger circuit of Li-ion batteries using 2P4M 0.35-μm CMOS process, which comprises a small bias circuit, a comparator with hysteresis, a transistor voltage divider circuit, a power MOS, and a Li-ion charger with a cut-off voltage and a recharge voltage. The proposed design receives a 13.56 MHz carrier with 5±0.2 V amplitude to charge the Li-ion batteries with a small constant current.

The second topic reveals a low dropout regulator (LDO) without capacitor load and ESR, including a bias circuit, an error amplifier, and a Flipped Voltage Follower circuit generating a stable output voltage independent on different loads. The proposed design improves the input voltage limitation of Flipped Voltage Follower by compensating phase margin such that the proposed design shows a good transient response and stability without any output capacitor. The proposed LDO is implemented by 1P6M 0.18-um CMOS process, which can operate correctly given an input voltage range from 3.3~4.2 V.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 概論 1
1.1 背景 1
1.2 相關技術與文獻探討 2
1.2.1 生醫無線系統及充電電池介紹 2
1.2.2 線性穩壓器介紹 4
1.3 研究動機 6
1.4 論文大綱 8
第二章 應用於生醫無線系統之鋰電池充電電路 9
2.1 鋰電池充電方式簡介 9
2.2 簡介及架構 12
2.3 電路設計 13
2.3.1 Bias_Circuit 13
2.3.2 Comparator[15] 18
2.3.3 Voltage_Divider 19
2.4 晶片模擬 21
2.4.1 模擬結果 21
2.5 晶片佈局 23
2.5.1 佈局考量 23
2.5.2 佈局平面圖 23
2.6 預計規格 24
2.7 電池充電實驗 25
2.8 晶片量測 26
2.9 分析與討論 27
第三章 無負載電容及ESR線性穩壓器 28
3.1 線性穩壓器概論 28
3.1.1 線性穩壓器之特性參數[25] 28
3.1.2 暫態響應(Transient Response)[25] 31
3.1.3 頻率響應(Frequency Response)[25] 33
3.1.4 負載電容的比較 34
3.2 簡介及架構 35
3.3 電路設計 36
3.3.1 Bias_Circuit1 36
3.3.2 EA(Error Amplifier) 38
3.3.3 Flipped Voltage Follower(FVF) 39
3.4 電路模擬 41
3.4.1 偏壓電路Bias_Circuit1模擬結果 41
3.4.2 電路模擬結果 42
3.5 晶片佈局 46
3.5.1 佈局考量 46
3.5.2 佈局平面圖 47
3.6 預計規格及討論 48
3.6.1 效能比較 48
3.6.2 結果與討論 49
3.7 共閘極補償之無負載電容及ESR線性穩壓器 50
3.7.1 改良緣由 50
3.7.2 Flipped Voltage Follower_2(FVF_2) 51
3.7.3 電路模擬 51
第四章 結論及成果 54
參考文獻 55
[1]J. S. Walter, J. S. Wheeler, W. Cai, W. W. King, and R. D. Wurster, “Evaluation of a suture electrode for direct bladder stimulation in a lower motor neuron lesioned animal mode,” IEEE Trans. on Rehabilitation Engineering, vol. 7, no. 2, pp. 59-166, June 1999.
[2]G. E. Loeb, F. J. R. Richmond, D. Olney, T. Cameron, A. C. Dupont, K. Kood, R. A. Peck, P. R. Troyk, and H. Schulman, “BION. Bionic neurons for functional and therapeutic electrical stimulation,” The 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 5, pp. 2305-2309, Nov. 1998.
[3]R. E. Isaacs, D. J. Weber, and A. B. Schwartz, “Work toward real-time control of a cortical neural prosthesis,” IEEE Trans. on Rehabilitation Engineering, vol. 8, no. 2, pp. 196-198, June 2000.
[4]I. Buchmann, “Understanding your batteries in a portable world. Article on battery choice and how to maximize service life,” The Fourteenth Annual Battery Conference on Applications and Advances, pp. 369-373, 1999.
[5]S.-Y. Park, H. Miwa, B. T. Clark, D. Ditzler, G. Malone, N. S. D''souza, and J.-S. Lai, ”A universal battery charging algorithm for Ni-Cd, Ni-MH, SLA, and Li-Ion for wide range voltage in portable applications,” IEEE Power Electronics Specialists Conference, pp. 4689-4694, June 2008.
[6]I. Buchmann, “Choosing a battery that will last cycle life of various battery systems,” The Fourteenth Annual Battery Conference on Applications and Advances, pp. 365-368, 1999.
[7]J. A. McDowall, “Substation battery options: present and future,” IEEE Power Engineering Review, vol. 20, no. 11, pp. 4-7, Nov. 2007.
[8]P.-F Li, and R. Bashirullah, “A wireless power interface for rechargeable battery operated medical implants,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol.54, no. 10, pp. 912- 916, Oct. 2007.
[9]P.-F. Li, R. Bashirullah, and J.-C. Principe, “A low power battery management system for rechargeable wireless implantable electronics,” IEEE International Symposium on Circuits and Systems, pp. 4, 2006.
[10]F. Lima, J. N. Ramalho, D. Tavares, J. Duarte, C. Albuquerque, T. Marques, A. Geraldes, A. P. Casimiro, G. Renkema, J. Been, and W. Groeneveld, “A novel universal battery charger for NiCd, NiMH, Li-ion and Li-polymer,” The 29th European Solid-State Circuits Conference, pp. 209-212, 2003.
[11]Y.-S. Hwang, S.-C. Wang, F.-C. Yang, and J.-J Chen, ”New compact CMOS Li-ion battery charger using charge-pump technique for portable applications,” IEEE Trans. on Circuits and Systems-I, vol. 54, no. 4, pp. 705-712, Apr. 2007.
[12]S. S. Prasad, and P. Mandal, “A CMOS beta multiplier voltage reference with improved temperature performance and silicon tunability,” 17th International Conference on VLSI Design, pp. 551-556, 2004.
[13]W.-Y. Chung, C.-C. Chuang, and T.-T. Chen, “A wide-range and high PSRR CMOS voltage reference for implantable device,” IEEE Asia Pacific Conference on Circuits and Systems, pp. 482-485, Dec. 2006.
[14]B. Razavi, Design of Analog CMOS Integrated Circuit, International ed., New York: McGraw Hill, 2001.
[15]R. J. Baker, CMOS Circuit Design, Layout, and Simulation, 2nd ed., New York: IEEE Press, 2005.
[16]S.-K. Lau, P. K. T. Mok, and K.-N. Leung, “A low-dropout regulator for SoC with Q-reduction,” IEEE J. of Solid-State Circuits, vol. 42, no. 3, pp. 658-664, Mar. 2007.
[17]C. K. Chava, and J. Silva-Martinez, “A frequency compensation scheme for LDO voltage regulators,” IEEE Trans. on Circuits and Systems-I, vol. 51, no. 6, pp. 1041-1050, June 2004.
[18]W.-J. Hung, S.-H. Lu, and S.-I. Liu, “CMOS low dropout linear regulator with single Miller capacitor,” Electronics Letters, vol. 42, no. 4, pp. 216-217, Feb. 2006.
[19]P. Hazucha, T. Kamik, B. A. Bloechel, C. Parsons, and S. Borkar, ”Area-efficient linear regulator with ultra-fast load regulation,” IEEE J. of Solid-State Circuits, vol. 40, no. 4, pp. 933-940, Apr. 2005.
[20]T.-Y. Man, K.-N. Leung, C.-Y. Leung, P. K. T. Mok, and M. Chan, “Development of Single-Transistor-Control LDO Based on Flipped Voltage Follower for SoC,“ IEEE Trans. on Circuits and Systems-I, Volume 55, no. 5, pp. 1392-1401, June 2008.
[21]K.-N. Leung, and Philip K.T. Mok, “A capacitor-free CMOS low-dropout regulator with damping-factor-control frequency compensation,” IEEE J. of Solid-State Circuits, vol. 38, no. 10, pp. 1691-1702, Oct. 2003.
[22]L.-G. Shen, Z.-S. Yan, X. Zhang, and Y.-F. Zhao, “A capacitor-less low-dropout regulator for SoC with bi-directional asymmetric buffer,” IEEE International Symposium on Circuits and Systems, pp. 2677-2680, May 2008.
[23]L.-R. Chen, R.-C. Hsu, C.-S. Liu, W.-Z. Yen, N.-Y. Chu, and Y.-L. Lin, “A Variable Frequency Pulse Charge Strategy for Li-ion Battery.” IEEE International Symposium on Industrial Electronics, vol. 3, pp. 995-1000, June 2005.
[24]C.-C. Tsai, C.-Y. Lin, Y.-S. Hwang, W.-T. Lee, and T.-Y. Lee, “A multi-mode LDO-based Li-ion battery charger in 0.35-mm CMOS technology,” IEEE Asia-Pacific Conference on Circuits and Systems, vol. 1, pp. 49-52, Dec. 2004.
[25]Technical Review of Low Dropout Voltage Regulator Operation and Performance, Texas Instruments, Texas, 1999.
[26]Design with Low Dropout Voltage Regulators, Micrel Semiconductor, California, San Jose, 1998.
[27]W. J. Sarjeant, I. W. Clelland, and R. A. Price, “Capacitive Components for Power Electronics,” Proceedings of the IEEE, vol. 89, no. 6, pp. 846-855, June 2001.
[28]C.-C. Huang, S.-F Yen, and C.-C. Wang, “A Li-ion battery charging design for biomedical implants,” IEEE Asia Pacific Conference on Circuits and Systems, pp. 400-403, Dec. 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊