(3.239.56.184) 您好!臺灣時間:2021/05/13 11:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許志駿
研究生(外文):Chih-chun Hsu
論文名稱:實現具有寬頻隔離度的MIMO天線於行動裝置上的應用
論文名稱(外文):Implementation of MIMO Antenna with Broadband Isolation for Portable Applications
指導教授:林根煌林根煌引用關係
指導教授(外文):Ken-Huang Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:68
中文關鍵詞:單負超穎材料多輸入多輸出隔離度雙頻寬頻
外文關鍵詞:Isolationmulti-outputDual-bandBroadbandSingle-negative metamaterialMulti-input
相關次數:
  • 被引用被引用:1
  • 點閱點閱:731
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們利用單負超穎材料的概念,設計行動裝置中降低MIMO天線彼此耦合的隔離機制。一開始我們利用多層週期性結構排列的方式來提升隔離器的頻寬,頻寬可利用調整每個超穎材料共振長度及多層陣元排列來提升,然後整合所設計的隔離器於一平面天線上,可以使天線的隔離度提升至-20dB 以上,量測及模擬頻寬值分別為8%及6.9%。接著我們針對MIMO 天線應用於多
頻帶操作的需求,提出一種可以使用在雙頻的隔離器設計。藉著堆疊兩層操作在不同頻率的隔離器,可同時提升雙頻天線在兩個頻段下的隔離度至-20dB 以上。
接著我們針對寬頻的應用層面設計一具有寬頻特性的隔離器,在兩天線仍保持0.18 波長的間距中,加入一T 型接地結構,使隔離頻寬在量測值中相較於原先多層結構有將近12.8%的提升,達到20.8%,所設計的寬頻隔離器可使用於現今多種應用MIMO 系統的通信標準。
In the thesis, we use the concept of single-negative metamaterials to reduce the antennas’ coupling. Firstly, the multilayer insulator is proposed to enhance the isolation bandwidth. The isolation bandwidth is broadened by adjusting the individual layer of insulators with close but different operating frequencies. Then, the designed multilayer insulator is inserted in a planar antenna system. Isolation of the MIMO antenna system is below than -20dB. The measured and simulated isolation bandwidth is 8% and 6.9%, respectively. We then design dual-band insulators for dual-band MIMO antenna applications. The proposed dual-band insulator is implemented bystacking the insulators with different operating bands and the isolation of the dual-band MIMO antenna can be improved at both 2.6 and 3.5GHz bands.
In the broadband insulator design, the T-shaped branch is proposed to broadenthe operating bandwidth. The measured isolation bandwidth is improved by 12.8% than that of the multilayer insulator. The bandwidth of the proposed broadband
insulator can be used in other broadband communication standards.
致謝 I
摘要(中文) III
摘要(英文) IV
目錄 V
圖表目錄 VI

第一章 序論(Introduction) 1
1-1 多輸入多輸出通訊架構 1
1-2 超穎材料簡介 2
1-3 相關研究概況 6
1-4 研究方法 10
1-5 論文大綱 10
第二章 評估週期性結構的諧振頻率(Evaluate Operating Frequencies of Finite-sized Periodic Structures) 12
2-1 天線接收實驗架構 12
2-2 有限數目的陣元對操作頻率的影響 16
2-2-1 PEC-PMC波導管的高度與共振頻率的關係 17
2-2-2 改變縱向(X軸)單元使用個數對共振頻率的影響 18
2-2-3 天線與單負材料擺放距離的影響 19
第三章 MIMO天線與多層周期性結構結合 (MIMO Antenna combined with Multilayer Structures) 20
3-1單一單負單元設計 20
3-2 MIMO天線基本設計 24
3-3結合多層結構的MIMO天線與比較 26
3-4 Ω-型高隔離度排列設計 28
3-5實作與討論 30
第四章 雙頻MIMO天線隔離設計(Dual-band MIMO Antenna Isolation Design) 33
4-1 雙頻MIMO天線設計 33
4-2 雙頻超穎材料設計概念 34
4-3實作及量測 38
第五章 寬頻MIMO天線隔離設計(Broadband MIMO Antenna Isolation Design) 42
5-1 天線近場對超穎材料陣元影響 42
5-2 L-型接地結構概念 43
5-3 MIMO天線結合H-型隔離器及T型接地結構 46
5-4實作與討論 48
第六章 結論(Conclusion) 53
參考文獻 55
[1] G. J. Foschini, M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Commun., vol. 6, pp. 311–335, Feb. 1998.
[2] Rohde & Schwarz, “An Introduction to MIMO systems,” Application notes, 1MA102
[3] K. Rosengren, “Correlation and capacity of MIMO systems and mutual coupling, radiation efficiency and diversity gain of their antennas : simulation and
measurements in a reverberation chamber,” IEEE Commun. Mag., vol. 42, pp. 104-112, Dec. 2004.
[4] S. Blanch, J. Romeu, and I. Corbella, “Exact representation of antenna system diversity performance from input parameter description,” IEE Electron. Lett., vol. 39, pp. 705–707, May. 2003.
[5] R. Ziolkowski, Metamaterials : Physics and Engineer Explorations, John Wiley & Sons, New York, USA, 2006.
[6] J. B. Pendry, “Low-frequency plasmons in thin wire structures,” J. Phys.: Condens. Matter, 10, pp. 4785-4809, Mar. 1998.
[7] D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison Wesley Press, New Jersey, USA, 1989.
[8] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory
Tech., vol. 47, pp. 2075-2083, Nov. 1999.
[9] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, “Metamaterials and negative refractive index,” SCIENCE, vol. 305, pp. 788-792, Aug. 2004
[10] T. M. Grzegorczyk,, C. D. Moss, J. Lu, X. Chen, J. Pacheco, Jr and J.-A. Kong,” Properties of left-handed metamaterials: transmission, backward phase,
negative refraction, and focusing,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, Sep. 2005.
[11] Y. Ge, K.P. Esselle and T. S. Bird, “Compact diversity antenna for wireless devices,” IEE Electron Lett., vol.41, no. 2, Jan. 2005.
[12] C.-Y. Chiu, C.-H. Cheng, R. D. Murch, and C. R. Rowell, “Reduction of mutual coupling between closely-packed antenna elements,” IEEE Trans.
Antennas Propag., vol.55, no. 6, Jun. 2007.
[13] F. Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic-band gap structures: a low mutual coupling design for array
applications,” IEEE Trans. Antennas Propag., vol. 51, no. 10, Oct. 2003
[14] E. Rajo-Iglesias, Ó. Quevedo-Teruel, and L. Inclán-Sánchez, “Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a
multilayer dielectric substrate,” IEEE Trans. Antennas Propag., vol. 56, no. 6, Jun. 2008
[15] A. Chebihi, C. Luxey, A. Diallo, P. L. Thuc, and R. Staraj, “A novel isolation technique for closely spaced PIFAs for UMTS mobile phones,” IEEE Antennas
Wireless Propag. Lett., vol.7, 2008.
[16] A. C. K. Mak, C. R. Rowell, R. D. Murch. “Isolation enhancement between two closely packed antennas,” IEEE Trans. Antennas Propag., vol.56, no. 12, Dec.
2008
[17] S.-C. Chen, Y.-S. Wang, and S.-J. Chung, “A Decoupling technique for increasing the port isolation between two strongly coupled antennas,” IEEE Trans. Antennas Propag., vol.56, no. 11, Nov. 2008
[18] D.M. Pozar, Microwave Engineering, 3rd ed., John Wiley & Sons, New York, USA, 2005.
[19] Y.-S. Wang, J.-C. Lu, and S.-J. Chung, “A miniaturized ground edge current choke —design, measurement, and applications,” IEEE Trans. Antennas Propag., vol.57, no.5, May. 2009.
[20] Ansoft Corporation HFSS, [Online]. Available: http://www.ansoft.com/products/hf/hfss/
[21] Schmid & Partner Engineer AG SEMCAD X, [Online]. Available: http://www.speag.com/simulation/downloads/index.php
[22] R. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antennas Propag., vol.51, pp.1516-1529, Jul.2003
[23] R. F. Harrington, Time-Harmonic Electromagnetic Fields, John Wiley & Sons, New York, USA, 2001.
[24] X. Chen, T. M. Grzegorczyk, B. –I. Wu, J. Pacheco, Jr., and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev E70.,016608, 2004
[25] K.-L. Wong, Planar Antennas for Wireless Communications, John Wiley & Sons, New York, USA, Jan. 2003.
[26] Thomas H. Lee, Planar Microwave Engineering: A Practical Guide to Theory, Measurement and Circuits, Cambridge, Cambridge University Press, 2004.
[27] J.-S. Hong and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. Microw.
Theory Tech., vol. 44, no. 12, Dec. 1996
[28] J. D. Baena, R. Marque′s, and F. Medina, “Artificial magnetic metamaterial design by using spiral resonators,” Phys. Rev B69, 014402, 2004
[29] C. A. Balanis, Antenna Theory and Design, 3rd ed., John Wiley & Sons, New York, USA, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔