|
[1]S. C. Cripps, RF Power Amplifiers for Wireless Communications, Norwood, MA: Artech House, 1999. [2]S. C. Cripps, Advanced Techniques in RF Power Amplifier Design, Norwood, MA: Artech House, 2002. [3]P. B. Kenington, High Linearity RF Amplifier Design, Norwood, MA: Artech House, 2000. [4]B. Razavi, “Challenges in portable RF transceiver design,” IEEE Circuits and Devices Magazine, vol. 12, no. 5, pp. 12–25, Sep. 1996. [5]B. Razavi, “RF transmitter architectures and circuits,” in Proc. Custom Integrated Circuits Conf., San Diego, CA, 1999, pp. 197–204. [6]B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415–1424, Sep. 2004. [7]M. E. Heidari and A. A. Abidi, “Behavioral models of frequency pulling in oscillators,” in Proc. IEEE Int. Behavioral Modeling Simulation Workshop, San Jose, CA, 2007, pp. 100–104. [8]P. Maffezzoni and D. D’Amore, “Evaluating pulling effects in oscillators due to small-signal injection,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 1, pp. 22–31, Jan. 2009. [9]C.-J. Li, C.-H. Hsiao, F.-K. Wang, T.-S. Horng, and K.-C. Peng, “A rigorous analysis of local oscillators pulling in frequency and discrete-time domain,” in 2009 IEEE Radio Frequency and Integrated Circuits Symp. Dig., pp. 409–412. [10]F. H. Raab, et al., “RF and microwave power amplifier and transmitter technologies –part 4,” High Frequency Electronics, pp. 38–49, Nov. 2003. [11]S. P. Stapleton, G. S. Kandola, and J. K. Cavers, “Simulation and analysis of an adaptive predistorter utilizing a complex spectral convolution,” IEEE Trans. Vehicular Technology., vol. 41, no. 4, pp. 387–394, Nov. 1992. [12]H. Besbes, T. Le-Ngoc, and H. Lin, “A fast adaptive polynomial predistorter for power amplifiers,” in Proc. IEEE Global Telecomm. Conf., San Antonio, TX, 2001, pp. 659–663. [13]K. C. Lee and P. Gardner, “A novel digital predistorter technique using an adaptive neuro-fuzzy inference system,” IEEE Communications Letters., vol. 7, no. 2, pp. 55–57, Feb. 2003. [14]H. H. Chen, C. H. Lin, P. C. Huang, and J. T. Chen, “Joint polynomial and look-up-table predistortion power amplifier linearization,” IEEE Trans. Circuits and Systems II, vol. 53, no. 8, pp. 612–616, Aug. 2006. [15]K. J. Muhonen, M. Kavehrad, and R. Krishnamoorthy, “Look-up table techniques for adaptive digital predistortion: a development and comparison,” IEEE Trans. Vehicular Technology, vol. 49, no. 5, pp.1995–2002, Sep. 2000. [16]J. K. Cavers, “Amplifier linearization using a digital predistorter with fast adaptation and low memory requirements,” IEEE Trans. Vehicular Technology, vol. 39, no.4, pp. 374–382, Nov. 1990. [17]J. K. Cavers, “Optimum table spacing in predistorting amplifier linearizers,” IEEE Trans .Vehicular Technology, vol. 48, no. 5, pp. 1699–1705, Sep. 1999. [18]K. J. Muhonen, M. Kavehrad, and R. Krishnamoorthy, “Look-up table techniques for adaptive digital predistortion: a development and comparison,” IEEE Trans. Vehicular Technology, vol. 49, no. 5, pp.1995–2002, Sep. 2000. [19]J. Y. Hassani and M. Kamareei, “Quantization error improvement in a digital predistorter for RF power amplifier linearization,” in Proc. IEEE Vehicular Technology Conf., Rhodes, Greece, 2001, pp. 1201–1204. [20]Y. Nagata, “Linear amplification technique for digital mobile communications,” in Proc. IEEE Vehicular Technology Conf., San Francisco, CA, 1989, pp. 159–164. [21]S. P. Stapleton, Digital Predistortion of Power Amplifiers, Agilent Technologies Inc. [online]. Available: http://www.agilent.com [22]A. S. Wright and W. G. Durtler, “Experimental performance of an adaptive digital linearized power amplifier,” IEEE Trans. Vehicular Technology, vol. 41, no. 4, pp. 395–400, Nov. 1992. [23]M. Faulkner and M. Johansson, “Adaptive linearization using predistortion – experimental results,” IEEE Trans. Vehicular Technology, vol. 43, no. 2, pp. 323–332, May 1994. [24]L. Sundstrom, M. Haulkner, and M. Johanson, “Quantization analysis and design of a Digital predistortion linearizer for RF power amplifier,” IEEE Trans. Vehicular Technology, vol. 45, no. 4, pp. 707–719, Nov. 1996. [25]S. Boumaiza, J. Li, M. J-.Saidane and F. M. Ghannouchi, “Adaptive digital/RF predistortion using a nonuniform LUT indexing function with built-in dependence on the amplifier nonlinearity,” IEEE Trans. Microwave Theory and Tech., vol. 52, no. 12, pp. 2670–2677, Dec. 2004. [26]W. J. Jung, W. R. Kim, K. M. King, and K. B. Lee, “Digital predistorter using multiple lookup tables,” Electronics Letters, vol. 39, no. 19, pp. 1386–1388, Sep. 2003. [27]C. H. Lin, et al., “Dynamically optimum lookup-table spacing for power amplifier predistortion linearization,” IEEE Trans. Microwave Theory and Tech., vol. 54, no. 5, pp. 2118–2127, May 2006. [28]R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE, vol. 34, no. 6, pp. 351–357, June 1946. [29]R. D. Huntoon and A. Weiss, “Synchronization of oscillators,” Proc. IRE, vol. 35, no. 12, pp. 1415–1423, Dec. 1947. [30]L. J. Paciorek, “Injection locking of oscillators,” Proc. IEEE, vol. 53, no. 11, pp. 1723–1727, Nov. 1965. [31]K. Kurokawa, “Injection locking of microwave solid-state oscillators,” Proc. IEEE, vol. 61, no. 10, pp. 1386–1410, Oct. 1973. [32]A. Mirzaei, M. E. Heidari, and A. A. Abidi, “Analysis of oscillators locked by large injection signals: generalized Adler’s equation and geometrical interpretation,” in Proc. IEEE Custom Integrated Circuits Conf., San Jose, CA, 2006, pp. 737–740. [33]B. Van der pol, “Forced oscillations in a circuit with nonlinear resistance,” Phil. Msg., vol. 3, pp. 65–80, Jan. 1927. [34]I. Schmideg, “Harmonic synchronization of nonlinear oscillators” Proc. IEEE, vol. 59, no.8, pp. 1250-1251, Aug. 1971. [35]R. C. Mackey, “Injection locking of klystron oscillators,” IRE Trans. Microwave Theory and Tech., vol. 10, no. 4, pp. 228–235, July 1962. [36]H. L. Stover and R. C. Shaw, “Injection-locked oscillators as amplifiers for angle-modulated signals,” in 1966 IEEE G-MTT Int. Symp. Dig., pp. 60–66. [37]H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, June 1999. [38]P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection-locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, no. 7, pp. 845–851, July 2002. [39]S. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi, “A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1148–1154, July 2003. [40]A. Mazzanti, P. Uggetti, and F. Svelto, “Analysis and design of injection-locked LC dividers for quadrature generation,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1425–1433, Sep. 2004. [41]A. Mirzaei, M. E. Heidari, R. Bagheri, S. Chehrazi, and A. A. Abidi, “The quadrature LC oscillator: a complete portrait based on injection locking,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1916–1932, Sep. 2007. [42]V. Uzunoglu and M. H. White, “The synchronous oscillator: a synchronization and tracking network,“ IEEE J. Solid-State Circuits, vol. sc-20, no. 6, pp. 1214–1226, Dec. 1985. [43]V. Uzunoglu and M. H. White, “Carrier recovery techniques using synchronous oscillators,” in Proc. IEEE Military Communications Conf., Monterey, CA, 1986, pp. 13.6.1–13.6.5. [44]V. Uzunoglu, “Coherent phase-locked synchronous oscillator,” Electronics Letters, vol. 20, no. 20, pp. 1060–1061, Sep. 1986. [45]V. Uzunoglu and M. H. White, “Synchronous and the coherent phase-locked synchronous oscillators: new techniques in synchronization and tracking,” IEEE Trans. Circuits and Systems, vol. 36, no.7, pp. 997–1004, July 1989. [46]V. Uzunoglu and M. H. White, “Coherent phase-locked synchronous oscillator (graphical design technique),” IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications, vol. 40, no. 1, pp. 60–63, Jan. 1993. [47]K. Murata, K. Sano, T. Akeyoshi, N. Shimizu, E. Sano, M. Yamamoto, and T. Ishibashi, “Optoelectronic clock recovery circuit using resonant tunneling diode and uni-travelling-carrier photodiode,” Electronics Letters, vol. 34, no. 14, pp. 1424–1425, July 1998. [48]H. Kamitsuna, T. Shibata, and K. Kurishima, “Clock extraction using an InP/InGaAs HPT direct optical injection-locked oscillator IC with a very wide locking range,” in 14th Annu. Meeting IEEE Lasers and Electro-Optics Society Proc., San Diego, CA, 2001, pp. 240–241. [49]J. Lasri, D. Dahan, A. Bilenca, G. Eisenstein, and D. Ritter, “Clock recovery at multiple bit rates using direct optical injection locking of a self-oscillating InGaAs-InP heterojunction bipolar phototransistor,” IEEE Photonics Technology Letters, vol. 13, no. 12, pp. 1355–1357, Dec. 2001. [50]H. Kamitsuna, T. Shibata, K. Kurishima, and M. Ida, “10- and 39-GHz-band InP/InGaAs direct optical injection-locked oscillator ICs for optoelectronic clock recovery circuits,” in 2002 IEEE MTT-S Int. Microwave Symp. Dig., pp. 1699–1702. [51]H. Kamitsuna, T. Shibata, K. Kurishima, and M. Ida, “Direct optical injection locking of InP/InGaAs HPT oscillator ICs for microwave photonics and 40-Gbit/s-class optoelectronic clock recovery,” IEEE Trans. Microwave Theory and Tech., vol. 50, no. 12, pp. 3002–3008, Dec. 2002. [52]H. Kamitsuna, T. Shibata, K. Kurishima, and M. Ida, “Direct optical injection locking of a 52-GHz InP-InGaAs HPT oscillator IC for over-100-Gb/s half- or full-rate optoelectronic clock recovery,” IEEE Photonics Technology Letters, vol. 15, no. 1, pp. 108–110, Jan. 2003. [53]V. Uzunoglu, “The regenerative receiver and the synchronous oscillator,” Proc. IEEE, vol .75, no. 10, pp. 1437, Oct. 1987. [54]E. Main and D. Coffing, “FM demodulation using an injection-locked oscillator,” in 2000 IEEE MTT-S Int. Microwave Symp. Dig., pp. 135–138. [55]E. Main and D. Coffing, “An FSK demodulator for bluetooth applications having no external components,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 49, no. 6, pp. 373–378, June 2002. [56]F. Ramírez, V. A. Araña, and A. Suárez, “Frequency demodulator using an injection-locked oscillator: analysis and design,” IEEE Microwave and Wireless Component Lett., vol. 18, no. 1, pp. 43–45, Jan. 2008. [57]Y. Tajima, “GaAs FET applications for injection-locked oscillators and self-oscillating mixers,” IEEE Trans. Microwave Theory and Tech., vol. MTT-27, no. 7, pp. 629–632, July 1979. [58]M. Sironen, Y. Qian, and T. Itoh, “A subharmonic self-oscillating mixer with integrated antenna for 60-GHz wireless applications,” IEEE Trans. Microwave Theory and Tech., vol. 49, no. 3, pp. 442–450, Mar. 2001. [59]S. Kobayashi and T. Kimura, “Coherence of injection phase-locked AlGaAs semiconductor laser,” Electronics Letters, vol. 16, no. 7, pp. 668–670, 1980. [60]A. C. Bordonalli, A. J. Seeds, and R. T. Ramos, “Low phase noise optical phase-lock loops using combined injection locking and phase locking,” in Inst. Elec. Eng. Colloquium on Microwave Opto-Electronics, London, UK, 1994, pp. 6/1–6/5. [61]R. T. Ramos, P. Gallion, D. Erasme, A. J. Seeds, and A. C. Bordonalli, “Optical injection locking and phase-lock loop combined systems,” Optics Letters., vol. 19, no. 1, pp. 4–6, 1994. [62]A. C. Bordonalli, C. Walton, and A. J. Seeds, “High performance homodyne optical injection phase-lock loop using wide linewidth semi-conductor lasers,” IEEE Photonics Technology Letters, vol. 8, no. 9, pp.1217–1219, 1996. [63]A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop,” IEEE J. Lightwave Technology, vol. 17, no. 2, pp. 328–342, Feb. 1999. [64]C.-J. Li, F.-K. Wang, T.-S. Horng, and K.-C. Peng, “A novel RF sensing circuit using injection locking and frequency demodulation for cognitive radio applications,” in 2009 IEEE MTT-S Int. Microwave Symp. Dig., pp. 1165–1168. [65]A. S. Daryoush, T. Berceli, R. Saedi, P. R. Herczfeld, and A. Rosen, “Theory of subharmonic synchronization of nonlinear oscillators,” in 1989 IEEE MTT-S Int. Microwave Symp. Dig., pp. 735–738. [66]X. Zhang, X. Zhou, and A. S. Daryoush, “A theoretical experimental study of the noise behavior of subharmonically injection and locked oscillators,” IEEE Trans. Microwave Theory and Tech., vol. 40, no. 5, pp. 895–902, May 1992. [67]X. Zhang, X. Zhou, B. Aliener, and A. S. Daryoush, “A study of subharmonic injection locking for local oscillators,” IEEE Microwave and Guided Wave Letters, vol. 2, no. 3, pp. 97–99, March 1992. [68]H. Ahmed, C. DeVries, and R. Mason, “A digitally tuned 1.1 GHz subharmonic injection-locked VCO in 0.18 um CMOS,” in Proc. 29th European Solid-State Circuits Conf., Estoril, Portugal, 2003, pp. 81–84. [69]S. Forestier, P. Bouysse, R. Quere, A. Mallet, J. M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-controlmethod,” IEEE Trans. Microwave Theory and Tech., vol. 52, no. 4, pp. 1132–1141, Apr. 2004. [70]D. Junxiong, P. S. Gudem, L. E. Larson, D. F. Kimball, and P. M. Asbeck, “A SiGe PA with dual dynamic bias control and memoryless digital predistortion forWCDMA handset applications,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1210–1221, May 2006. [71]J. Staudinger, B. Gilsdorf, D. Newman, G. Norris, G. Sadowniczak, R. Sherman, and T. Quach, “High efficiency CDMA RF power amplifier using dynamic envelope tracking technique,” in 2000 IEEE MTT-S Int. Microwave Symp. Dig., pp. 873–876. [72]F. Wang, A. H. Yang, D. F. Kimball, L. E. Larson, and P. M. As-beck, “Design of wide-bandwidth envelope-tracking power amplifiers for OFDM applications,” IEEE Trans. Microwave Theory and Tech., vol. 53, no. 4, pp. 1244–1255, Apr. 2005. [73]P. Reynaert and M. S. J. Steyaert, “A 1.75-GHz polar modulated CMOS RF power amplifier for GSM-EDGE,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2598–2608, Dec. 2005. [74]A.W. Hietala, “A quad-band 8PSK/GMSK polar transceiver,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1133–1141, May 2006. [75]L. R. Kahn, “Single sideband transmission by envelope elimination and restoration,” Proc. IRE, vol. 40, no. 7, pp. 803–806, July 1952. [76]J.-K. Jau, Y.-A. Chen, S.-C. Hsiao, T.-S. Horng, and J.-Y. Li, “Highly efficient multimode RF transmitter using the hybrid quadrature polar modulation scheme,” in 2006 IEEE MTT-S Int. Microwave Symp. Dig., pp. 789–792. [77]C.-J. Li, T.-S. Horng, J.-K. Jau, and J. Y. Li, “System design issues in a HQPM-based transmitter,” in 2007 IEEE MTT-S Int. Microwave Symp. Dig., pp. 77–80. [78]J.-K. Jau, “Study and implementation of highly efficient RF transmitter using hybrid quadrature polar modulation scheme,” Ph. D. dissertation, Dept. Elect. Eng., National Sun Yat-Sen Univ., Kaohsiung, Taiwan, 2006. [79]WiMAX Concepts and RF Measurements, IEEE 802.16-2004 WiMAX PHY layer operation and measurements Application Note, Agilent Technologies Inc., CA, 2005. [80]B. Bisla, R. Eline, and L. M. F.-Neto, “RF system and circuit challenges for WiMAX,” Intel Technology Journal, vol. 8, pp. 189–200, Aug., 2004. [81]C. Masse and Q. Luu, A 2.xGHz WiMAX Direct Conversion Transmitter Application Note, Analog Devices Inc., Norwood, MA, 2006. [82]3GPP2 C.S0024, ver. 2.1: ‘cdma2000 high rate packet data air interface specification’. 2001 [83]3GPP2 C.S0006, ver. 1.0: ‘Analog signaling standard for cdma2000 spread spectrum systems’. 2002 [84]X. Lai and J. Roychowdhury, “Capturing oscillator injection locking via nonlinear phase-domain macromodels,” IEEE Trans. Microwave Theory and Tech., vol. 52, no. 9, pp. 2251–2261, Sep. 2004. [85]X. Lai and J. Roychowdhury, “Automated oscillator macromodelling techniques for capturing amplitude variations and injection locking,” in Proc. IEEE/ACM Int. Conf. Computer Aided Design, San Jose, CA, 2004, pp. 687–694. [86]X. Lai and J. Roychowdhury, “Analytical equations for predicting injection locking in LC and ring oscillators,” in Proc. IEEE Custom Integrated Circuits Conf., San Jose, CA, 2005, pp. 461–464. [87]S. Srivastava, X. Lai, and J. Roychowdhury, “Nonlinear phase macromodel based simulation/design of PLLs with superharmonically locked dividers,” in Proc. IEEE Custom Integrated Circuits Conf., San Jose, CA, 2006, pp. 350–352. [88]G. D. Vendelin, A. M. Pavio, and U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques. New York: Wiley, 1990, Chapter 6. [89]S. Haykin, Communication Systems, 4th ed. New York: Wiley, 2001. [90]R. E. Best, Phase-Locked Loops: Theory, Design, and Applications, 2nd ed. New York: McGraw-Hill, 1993. [91]A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1999. [92]M. J. E. Golay, “Normalized equations of the regenerative oscillator–noise, phase-locking, and pulling,” Proc. IEEE, vol. 52, no. 11, pp. 1311–1330, Nov. 1964. [93]M. J. E. Golay, “Comments on ‘Normalized equations of the regenerative oscillator–noise, phase-locking, and pulling’,” Proc. IEEE, vol. 53, no. 5, pp. 518–519, May 1965. [94]M. E. Hines, J. R. Collinet, and J. G. Ondria, “FM noise suppression of an injection phase-locked oscillator,” IEEE Trans. Microwave Theory and Tech., vol. MTT-16, no. 9, pp. 738–742, Sep. 1968. [95]K. Kurokawa, “Noise in synchronized oscillators,” IEEE Trans. Microwave Theory and Tech., vol. MTT-16, no. 4, pp. 234–240, Apr. 1968. [96]T. Sugiura and S. Sugimoto, “FM noise reduction of Gunn-effect oscillators by injection locking,” Proc. IEEE (Letters), vol. 57, no. 1, pp. 77–78, Jan. 1969. [97]J. R. Ashley, “Measured FM noise reduction by injection phase locking,” Proc. IEEE (Letters), vol. 58, no. 1, pp. 155–157, Jan. 1970. [98]K. F. Schünemann and K. Behm, “Nonlinear noise theory for synchronized oscillators,” IEEE Trans. Microwave Theory and Tech., vol. MTT-27, no. 5, pp. 452–458, Apr. 1979. [99]J. C. Nallatamby, M. Prigent, J. C. Sarkissian, R. Quere, and J. Obregon, “A new approach to nonlinear analysis of noise behavior of synchronized oscillators and analog-frequency dividers,” IEEE Trans. Microwave Theory and Tech., vol. 46, no. 8, pp. 1168–1171, Aug. 1998. [100]“Spectrum policy task force report,” Federal Communications Commission, Washington, DC, ET Docket no. 02–115, 2002. [101]“Unlicensed operation in the TV broadcast bands and additional spectrum for unlicensed devices below 900 MHz in the 3 GHz band,” Federal Communications Commission, Washington, DC, Notice of proposed rulemaking FCC 04–113, 2004. [102]J. Mitola III and G. Q. Maguire Jr., “Cognitive radio: making software radios more personal,” IEEE Personal Communications, vol. 6, no. 4, pp. 13–18, Aug. 1999. [103]S. M. Mishra, D. Cabric, C. Chang, D. Willkomm, B. Schewick, A. Wolisz, and R. W. Brodersen, “A real time cognitive radio testbed for physical and link layer experiments,” in Proc. 1st IEEE Int. New Frontier in Dynamic Spectrum Access Networks Symp., Baltimore, MD, 2005, pp. 562–567. [104]A. Mayer .et al, “RF front-end architecture for cognitive radios,” in Proc. 18th Annu. Personal, Indoor and Mobile Radio Comm. Symp., Athens, Greece, 2007, pp. 1–5. [105]T. Rapinoja, K. Stadius, L. Xu, S. Lindfors, R. Kaunisto, A. Pärssinen, and J. Ryynänen, “A digital frequency synthesizer for cognitive radio spectrum sensing applications,” in 2009 IEEE Radio Frequency and Integrated Circuits Symp. Dig., pp. 423–426. [106]B. Ackland and I. Seskar, “High performance cognitive radio platform with integrated physical & network layer capabilities,” presented at the Berkeley Wireless Research Center Cognitive Radio Workshop, Berkeley, CA, Nov. 1, 2004.
|