(3.236.122.9) 您好!臺灣時間:2021/05/14 06:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李奕德
研究生(外文):Yih-Der Lee
論文名稱:含分散式發電之微電網系統運轉與控制
論文名稱(外文):The Operation and Control of Micro-grid Systems with Dispersed Generation
指導教授:陳朝順陳朝順引用關係
指導教授(外文):Chao-Shun Chen
學位類別:博士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:175
中文關鍵詞:類神經網路靜態同步補償器微電網風力發電汽電共生
外文關鍵詞:artificial neural networkwind power generationSTATCOMmicro-gridcogeneration system
相關次數:
  • 被引用被引用:4
  • 點閱點閱:1381
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對含汽電共生系統之大型工業用戶及含風力發電系統之配電系統,探討含分散式電源微電網系統之運轉策略及保護措施。首先考量分散式電源之運轉控制模式,建立汽電共生機組與風力機組之數學模型,再建立微電網系統及其鄰近電力系統網路架構,依據分散式電源輸出特性及微電網內之負載用電模型,分析微電網於故障發生前之穩態負載潮流。當外部系統發生嚴重事故時,為了維持分散式發電機組之穩定運轉及避免電壓敏感性重要負載跳脫,因此微電網必須及時與外部電力系統故障隔離。針對大型工業用戶微電網,考量汽電共生機組之故障穿透能力及重要負載之電壓降容忍度,藉由電力系統暫態穩定度分析,決定微電網與台電系統聯結線解聯之高頻、低頻及低電壓保護電驛之設定,此外考量汽電共生機組調速系統之響應,設計以低頻及低電壓的方式來執行卸載策略。
另外針對含風力發電系統之配電微電網,考慮風速的時變性及配電系統負載的變化所造成之饋線電壓變動,利用靜態同步補償器作適應性之無效功率補償,除了有效改善配電饋線之電壓降而維持風機之輸出端電壓,當外部電力系統發生故障時,亦可改善配電微電網之暫態響應。此外考量風機之低電壓忍受能力及故障臨界清除時間,決定微電網之低電壓保護設定,為了有效達成配電微電網之孤島運轉,設計以類神經網路為基礎之配電微電網與外部系統解聯的時機與卸載策略,以風速、饋線負載量及微電網系統電壓做為類神經網路之輸入變數,快速計算微電網與外部電力系統聯結線斷路器之臨界跳脫時機及微電網之適應性卸載量。最後藉由電力系統暫態穩定度電腦模擬,分析外部電力系統可能的故障,以驗證大型工業用戶及配電系統微電網能夠及時跳脫聯結線而形成孤島運轉,使分散式電源於外部電力系統擾動下能恢復穩定運轉,以提高微電網之重要負載供電可靠。
This dissertation is to design the operation strategy and protective scheme of micro-grid systems with dispersed generation (DG). The industrial power system with cogeneration units and the distribution feeder with wind power generators were selected as the study micro-grids for computer simulation. The mathematical models of cogeneration units and wind generators were included in the computer simulation by considering the operation control modes of DGs. The micro-grid systems and the nearby utility networks were constructed to solve the power flows of the micro-grids with various operation scenarios of power generation and load demand. For the severe external fault contingencies, the micro-grids have to be isolated from the utility power system in time to prevent the tripping of critical loads and DGs. By considering the fault ride through capability of cogenerators and voltage tolerance curves of critical loads, the critical tripping time (CTT) of tie circuit breaker of the micro-grids was determined according to the transient stability analysis. To maintain the stable operation of the micro-grids after tie line tripping, the load shedding scheme was designed by applying the under frequency and under voltage relays to disconnect the proper amount of non-critical loads according to the governor responses of cogeneration units.
For the micro-grid of distribution feeder with wind power generator, the STATCOM was used to provide adaptive reactive power compensation for the mitigation of voltage fluctuation due to the variation of wind speed and feeder loading. The STATCOM can also be applied for the support of terminal voltage of wind generator (WG) to enhance the transient response of the micro-grid. The CTT of tie circuit breaker was determined by considering the low voltage ride through (LVRT) capability and the critical fault cleaning time of WG. To achieve more effective islanding operation of the micro-grids, the artificial neural network (ANN) was applied to determine the proper timing for tie line tripping and the proper amount of load shedding by using the wind speed, feeder loading and the voltage of micro-grid system as the input of ANN. To verify the effectiveness of the proposed tie line tripping and load shedding scheme, different fault contingencies of the external utility network have been simulated by using the computer program for the transient stability analysis. It is found that the critical and voltage sensitive loads of the micro-grid can be maintained when the tie circuit breaker is activated to isolate the external fault in time and followed by the execution of load shedding scheme.
論文摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XIV
符號說明 XV
第一章 緒論 1
1-1 研究背景與目的 1
1-2 研究方法與步驟 4
1-3 論文主要貢獻 8
1-4 論文章節概要 9
第二章 分散式發電系統 12
2-1 前言 12
2-2 汽電共生系統 13
2-2-1 汽電共生系統運轉與控制 14
2-2-1-1 蒸汽鍋爐系統 16
2-2-1-2 發電機調速系統 18
2-2-2 同步發電機與激磁系統 22
2-2-2-1 同步發電機數學模型 22
2-2-2-2 激磁系統數學模型 25
2-2-3 汽電共生機組暫態分析 28
2-3 風力發電系統 31
2-3-1 風力發電系統運轉與控制 32
2-3-2 感應發電機數學模型 37
2-3-3 感應發電機暫態分析 38
第三章 靜態同步補償器之虛功率補償 45
3-1 前言 45
3-2 靜態虛功補償器與靜態同步補償器架構及原理 46
3-3 靜態同步補償器數學模型與控制模式 51
3-4 靜態同步補償器之電壓穩定度改善 56
第四章 含分散式發電之微電網運轉分析 59
4-1 前言 59
4-2 大型工業用戶微電網 60
4-2-1 焚化廠電力系統微電網架構與運轉分析 62
4-2-2 鋼鐵廠電力系統微電網架構與運轉分析 66
4-3 配電系統微電網 69
4-3-1 含風力發電與STATCOM之配電微電網架構與運轉分析 71
第五章 大型工業用戶微電網解聯與卸載策略 78
5-1 前言 78
5-2 大型工業用戶微電網運轉保護措施 79
5-2-1 微電網高低頻率保護 80
5-2-2 微電網低電壓保護 84
5-2-3 敏感性負載之電壓容忍曲線 85
5-3 大型工業用戶微電網解聯及卸載策略 86
5-3-1 鋼鐵廠微電網解聯電驛設定 88
5-3-2 鋼鐵廠微電網卸載策略 90
5-4 大型工業用戶微電網故障分析 91
5-4-1 台電系統故障實例 92
5-4-2 鋼鐵廠微電網孤島運轉 94
5-4-2-1 台電系統鳳農變電所故障模擬 94
5-4-2-2 南工匯流排(乙)故障模擬 97
5-4-2-3 高港匯流排(乙)故障模擬 98
5-4-3 焚化廠微電網孤島運轉 99
5-4-3-1 焚化廠與台電系統聯結專線故障模擬 100
5-4-3-2 南工(甲)與高港(甲)之161kV傳輸線故障模擬101
5-4-3-3 高港匯流排(甲)故障模擬 102
第六章 應用類神經網路設計配電微電網解聯與卸載策略104
6-1 前言 104
6-2 配電微電網低電壓保護 105
6-3 以STATCOM改善風機故障忍受能力 107
6-4 類神經網路設計 109
6-4-1 神經元簡介 110
6-4-2 類神經網路架構 112
6-4-3 類神經網路之訓練模式 113
6-5 應用類神經網路於微電網解聯及卸載策略之設計120
6-5-1 含風力發電之配電微電網解聯設計 123
6-5-2 含風力發電之配電微電網卸載策略 125
6-6 含風力發電之配電微電網故障分析 129
6-6-1 日安饋線故障及時清除 130
6-6-2 日安饋線故障延時清除 132
6-7 本章結論 136
第七章 結論與未來研究方向 138
7-1 結論 138
7-2 未來研究方向 139
參考文獻 141
論文著作 149
作者簡歷 151
[1] 台灣電力公司,「再生能源發電系統併聯技術要點」,民國91年6月。
[2] 台灣電力公司,「汽電共生併聯技術要點」,民國98年3月。
[3] 吳煌、吳振中,「我國再生能源發展策略及推動現況」,台電工程月刊,651期,民國91年11月。
[4] 梁志堅,「再生能源發電專輯-台灣太陽能與風力發電」,台電工程月刊,651期,民國91年11月。
[5] 翁榮羨、呂威賢,「全球風力發電應用現狀與國內開發展望」,台電工程月刊,651期,民國91年11月。
[6] 郭禮青,「全球太陽光電開發現況及國內應用潛力」,台電工程月刊,651期,民國91年11月。
[7] 邱清泉,臺灣地區推廣太陽能發電系統之研究,碩士論文,大葉大學,民國九十二年。
[8] 蔡勳雄,「環境變遷與節能減碳-台灣的策略與願景」,第22屆近代工程技術討論會,民國97年11月。
[9] 傅俊仁,分散式電源對配電系統之故障電流與電壓驟降分析,碩士論文,南台科技大學,民國九十四年。
[10] Y. D. Lee, C. S. Chen, C. T. Hsu, and H. S. Cheng, "Harmonic analysis for the distribution system with dispersed generation," Proceeding Power Con, International Conference on Power System Technology, China, Oct. 2006.
[11] 胡忠興,「風力發電併聯於配電系統之規劃研究」,台電工程月刊,民國92年10月。
[12] 林育賢,含分散式電源之配電系統穩定度分析,碩士論文,中山大學,民國九十二年。
[13] 盧展南、劉承宗、王醴、鄧人豪、陳野正仁,中山大學電機工程研究所,風力發電對系統衝擊影響之研究,2003年台灣電力公司研究計畫。
[14] 郭誌原,風力發電與電力系統倂聯影響研究,碩士論文,中山大學,民國九十三年。
[15] 黃焜詮,利用MATLAB/Simulink模擬含分散式電源之配電系統穩定度分析,碩士論文,中山大學,民國九十四年。
[16] 林群峰,以分散式太陽能發電系統為主之微電網,碩士論文,台灣科技大學,民國九十六年。
[17] R. H. Lasseter, A. Akhil, C. Marnay, J. Stephens, J. Dagle, R. Guttromson, A. Meliopoulous, R. Yinger, and J. Eto, The CERTS microgrid concept, White paper for Transmission Reliability Program, Office of Power Technologies, U.S. Department of Energy, April 2002.
[18] R. H. Lasseter, "Microgrid," in Proc. IEEE Power Eng. Soc. Winter Meeting, New York, vol. 1, pp. 305-308, 2002.
[19] R. H. Lasseter and P. Piagi, "Microgrid: A conceptual solution," in Proc. 35th PESC, Aachen, Germany, vol. 6, pp. 4285-4290, June 2004.
[20] Benjamin Kroposki, Thomas Basso, and Richard DeBlasio, "Microgrid standards and technologies," Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008.
[21] C. Marnay and O. Bailey, The CERTS microgrid and the future of the macrogrid, LBNL-55281, August 2004.
[22] P. Piagi and R. H. Lasseter, "Industrial application of micro grids," Power System Engineering Research Center, Univ. Wisconsin, Madison, WI, 2001.
[23] F. Katiraei, M. R. Iravani, and P. W. Lehn, "Micro-grid autonomous operation during and subsequent to islanding process," IEEE Transactions on Power Delivery, vol. 20, no. 1, pp. 248-257, January 2005.
[24] F. D. Kanellos, A. I. Tsouchnikas, and N. D. Hatziargyriou, "Micro-grid simulation during grid-connected and islanded modes of operation," International Conference on Power Systems Transients, Montreal, Canada, pp. 19-23, June 2005.
[25] N. Jayawarna, X. Wu, Y. Zhang, N. Jenkins, and M. Barnes, "Stability of a microgrid," The 3rd IET International Conference on Power Electronics, Machines and Drives, March 2006.
[26] J. A. Peças Lopes, C. L. Moreira, and A. G. Madureira, "Defining control strategies for microgrids islanded operation," IEEE Transactions on Power Systems, vol. 21, no. 2, pp. 916-924, May 2006.
[27] C. T. Tsai, C. S. Chen, Y. D. Lee, and C. T. Hsu, "Operation analysis of distribution feeders with wind power generation," The Fourth IASTED International Conference on Power and Energy Systems, Langkawi, Malaysia, Apr. 2008.
[28] E. Cheres, "Small and medium size drum boiler models suitable for long term dynamic response," IEEE Transactions on Energy Conversion, vol. 5, no. 4, pp. 686-692, December 1990.
[29] F. P. de Mello, "Boiler models for system dynamic performance studies," IEEE Transactions on Power Systems, vol. 6, no. 1, pp. 66-74, 1991.
[30] J. L. Sancha, M. L. Llorens, J. M. Moreno, B. Meyer, J. F. Vernotte, W. W. Price, and J. J. Sanchez-Gasca, "Application of long term simulation programs for analysis of system islanding," IEEE Transactions on Power Systems, vol. 12, no. 1, pp. 189-197, 1997.
[31] M. E. Flynn and M. J. O’ Malley, "A drum boiler model for long term power system dynamic simulation," IEEE Transactions on Power Systems, vol. 14, no. 1, pp. 209-217, 1999.
[32] CYMSTAB User Guide, CYME International Inc., Canada, 2006.
[33] Turbogenerator Manual, Siemens AG. Bereich Energieerzeugung (KWU), 1997.
[34] M. Jan, W. B. Janusz, and R. B. James, Power System Dynamics and Stability, John Wiley & Sons Inc., 1997.
[35] P. M. Anderson and A. A. Fouad, Power System Control and Stability, The Institute of Electrical and Electronics Inc., New York, 1994.
[36] P. Kundur, Power System Stability and Control, McGraw-Hill, Inc., New York, 1994.
[37] A. J. Wood and B. F. Wollenberg, Power Generation, Operation and Control, John Wiley & Sons, 1984.
[38] Y. D. Lee, C. S. Chen, and C. T. Hsu, "Adaptive governor control and load shedding scheme for an incinerator plant," IFAC Symposium on Power Plants and Power Systems Control, Kananaskis, Canada, June 2006.
[39] WOODWARD505 User’s Guide, 2006.
[40] C. M. Ong, Dynamic Simulation of Electric Machinery, Prentice-Hall, Inc., New Jersey, pp. 259-350, 1997
[41] IEEE Committee Report, "Computer representation of excitation systems", IEEE Transactions on PAS, vol. PAS-87, pp. 1460-1464, June 1968.
[42] Caterpillar, Specifications Systems Operation Testing and Adjusting Cater- pillar Digital Voltage Regulator (CDVR), October 2007.
[43] W. D. Stevenson and J. J. Grainger, Power System Analysis, McGraw-Hill, Inc., New York, pp. 703-707, 1994.
[44] Hadi Saadat, Power System Analysis, McGraw-Hill ,Inc., 2004
[45] 沈進泉,應用固態同步電容器以作為獨立感應機系統之電壓調整控制,碩士論文,清華大學,民國八十四年。
[46] 林智偉,含風力發電微型電網之孤島運轉與卸載策略,碩士論文,中山大學,民國九十六年。
[47] Matlab/SimPowerSystems User’s Guide, 2006.
[48] E. Santos, T. Asiain, D. Ruiz, and D. Olguin, "The effect of induction generators on the transient stability of a laboratory electric power system," Electric Power Systems Research, vol. 61, pp. 211-219, 2002.
[49] P. Ledesma, J. Usaola, and J. L. Rodriguez, "Transient stability of a fixed speed wind farm," Renewable Energy, vol. 28, pp. 1341-1355, 2003.
[50] O. Samuelsson and S. Lindahl, "On speed stability," IEEE Transactions on Power Systems, vol. 20, no. 2, pp. 1179-1180, 2005.
[51] Ahda Pionkoski Grilo, Alexandre de Assis Mota, Lia Toledo Moreira Mota, and Walmir Freitas, "An analytical method for analysis of large-disturbance stability of induction generators," IEEE Transactions on Power Systems, vol. 22, no. 4, pp. 1861-1869, 2007.
[52] L. Holdsworth, X. G. Wu, J. B. Ekanayake, and N. Jenkins, "Comparison of fixed speed and doubly-fed induction wind turbines during power system disturbances," IEE Proc. Generation, Transmission and Distribution, vol. 150, no. 3, pp. 343-352, 2003.
[53] D. J. Trudnowski, A. Gentile, J. M. Khan, and E. M. Petritz, "Fixed-speed wind generator and wind-park modeling for transient stability studies," IEEE Transactions on Power Systems, vol. 19, no. 4, pp. 1911-1917, 2004.
[54] V. Akhmatov, H. Knudsen, A. H. Nielsen, J. K. Pedersen, and N. K. Poulsen, "Modeling and transient stability of large wind farms," Electric Power and Energy Systems, vol. 25, pp. 123-144, 2003.
[55] Salman K. Salman and Anita L. J. Teo, "Windmill modeling consideration and factors influencing the stability of a grid-connected wind power-based embedded generator," IEEE Transactions on Power Systems, vol. 18, no. 2, pp. 793-802, 2003.
[56] T. J. E. Miller, Reactive Power Control in Electric System, John Wiley & Sons, Inc., 1982.
[57] 江榮城,電力品質實務(一),全華科技圖書股份有限公司,2000。
[58] M. H. J. Bollen, Understanding Power Quality Problems: Voltage Sags and Interruptions, Series on Power Engineering. New York: IEEE Press, 2000.
[59] 台灣電力公司,配電饋線三相不平衡分析及改善策略之研究,期末報告,民國八十七年七月。
[60] C. T. Hsu, H. J. Chuang, and C. S. Chen, "Power quality assessment of large motor starting and loading for the integrated steel-making cogeneration facility," IEEE Transactions on Industry Applications, vol. 43, no. 2, pp.395-402, March/April 2007.
[61] C. S. Chen, Y. D. Lee, C. T. Hsu, D. S. Ting, and C. C. Shen, "Power quality assessment of a hot strip mill with cycloconverter drive systems," IEEE Industry Applications Conference, New Orleans, USA, Sep. 2007.
[62] N. G. Hingorani and L. Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, Institute of Electrical and Electronics Engineers, Inc., IEEE Press, 2000.
[63] P. S. Sensarma, K. R. Padiyar, and V. Ramanarayanan, "Analysis and performance evaluation of a distribution STATCOM for compensating voltage fluctuations," IEEE Transactions on Power Delivery, vol. 16, pp. 259-264, Apr. 2001.
[64] 陳本盛,靜態同步補償器之解析式諧波分析及控制器設計,博士論文,台灣大學,民國九十五年。
[65] 常雲,運用STATCOM對動態及不平衡電壓之補償,碩士論文,中正大學,民國九十六年。
[66] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics:Conver- ters, Application, and Design third Edition, John Wiley & Sons, Inc.
[67] M. Salles, W. Freitas, and A. Morelato, "Comparative analysis between SVC and DSTATCOM devices for improvement of induction generator stability," IEEE MELECON, Dubrovnik, Croatia, 2004.
[68] C. Schauder, and H. Mehta, "Vector analysis and control of advanced static VAR compensator," IEE Proceedings, vol. 140, no. 4, pp. 299-306, July 1993.
[69] 張權德,用以改善動態特性之靜態同步補償器與整合型電力潮流控制器設計,博士論文,台灣大學,民國九十一年。
[70] 陳偉倫,風力-感應發電機系統之電壓及頻率調整器設計,博士論文,台灣大學,民國九十五年。
[71] W. L. Chen and Y. Y. Hsu, "Controller design for an induction generator driven by a variable-speed wind turbine," IEEE Transactions on Energy Conversion, vol. 21, no. 3, pp. 625-635, 2006.
[72] Z. Chen, Frede Blaabjerg, and Y. Hu, "Stability improvement of wind turbine systems by STATCOM," IEEE Industrial Electronics, IECON 2006.
[73] Nayeem Rahmat Ullah and Torbjorn Thiringer, "Variable speed wind turbines for power system stability enhancement," IEEE Transactions on Energy Conversion, vol. 22, no. 1, pp. 52-60, 2007.
[74] L. Qi, J. Langston, and M. Steurer, "Applying a STATCOM for stability improvement to an existing wind farm with fixed-speed induction generators," IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008.
[75] 陳朝順,許振廷,中鋼電力卸載系統俢訂研究期末報告,民國九十五年八月。
[76] 台灣電力公司,整合分散型電源建構優質配電網之研究,期中報告,民國九十七年。
[77] 李奕德,汽電共生系統解聯電驛設定與卸載策略之研究,碩士論文,台灣科技大學,民國八十八年。
[78] C. S. Chen, C. T. Hsu, Y. D. Lee, J. F. Huang, H. S. Chen, R. T. Hsu, and C. B. Huang, "Under frequency relay setting for tie line and load shedding of an industrial power system with multiple cogeneration units," 1999 IEEE/IAS, Pulp and Paper Conference, Seattle, pp. 184-189, Jun. 1999.
[79] C. S. Chen, C. T. Hsu, Y. D. Lee, J. F. Huang, H. S. Chen, R. T. Hsu, and C. B. Huang, "Design of protective scheme for tie line tripping of an industrial cogeneration system," 1999 IEEE/IAS, Annual Meeting, Phoenix, vol. 3, pp. 2058-2063, Oct. 1999.
[80] C. T. Hsu, "Modification of under-frequency relay settings for the upgrading of a cogeneration plant," Proceedings of the IEEE PES General Meeting, Toronto, Canada, pp. 1145-1150, July 2003.
[81] C. T. Hsu, "Under-voltage relay settings for the tie-lines tripping in an upgrading cogeneration plant," Proceedings of the IEEE TENCON Meeting, Chiang Mai, Thailand, vol. C, pp. 264-267, Nov. 2004.
[82] C. S. Chen, Y. D. Lee, C. T. Hsu, and H. J. Chuang, "Design of under voltage relay settings for an industrial plant with cogeneration units to enhance power quality of critical loads," IEEE Transactions on Industry Applications, vol. 44, no. 4, pp. 1295-1302, July 2008.
[83] C. S. Chen, C. T. Hsu, Y. D. Lee, D. S Ting, and C. C. Shen, "Protective relay settings of tie line tripping and load shedding for an integrated steel-making cogeneration system," IEEE Industry Applications Society Annual Meeting, Edmonton, Canada, Oct. 2008.
[84] 陳朝順,李奕德,陳哲寬,張文忠,「抽汽冷凝式汽電共生系統適應運轉策略」,第27屆電力研討會,清華大學,2006。
[85] C. S. Chen, Y. D. Lee, C. T. Hsu, and C. K. Chen, "Transient response of an incinerator plant by considering boiler model with dynamic steam variation," IEEE Transaction on Power Systems, vol. 23, no. 1, pp. 92-99, Feb. 2008.
[86] 李奕德,「南區資源回收廠之蒸汽及發電系統最佳運轉控制」,高雄市政府研究發展成果彙編,民國97年6月。
[87] Saˇsa ˇ Z. Djokic′, Jovica V. Milanovic′, and Daniel S. Kirschen, "Sensitivity of AC adjustable speed drives to voltage sags and short interruptions," IEEE Transactions on Power Delivery, vol. 20, no. 1, pp. 494-504, January 2005.
[88] Jos′e Luis, Dur′an-G′omez, Prasad N. Enjeti, and Byeong Ok Woo, "Effect of voltage sags on adjustable-speed drives: A critical evaluation and an approach to improve performance," IEEE Transactions on Industry Applications, vol. 35, no. 6, pp. 1440-1449, Nov./Dec. 1999.
[89] Y. L. Ke, C. S. Chen, C. T. Hsu, and Y. D. Lee, "Adaptive load shedding schemes for large cogeneration system by using artificial neural metwork," North America Power Symposium, Waterloo, Canada, pp. 23-24, Oct. 2000.
[90] 黃漢汶,應用類神經網路於電力系統卸載策略之研究,碩士論文,中山大學,民國九十二年。
[91] C. T. Hsu, M. S. Kang, and C. S. Chen, "Design of adaptive load shedding by artificial neural networks," IEE Proc. Generation, Transmission and Distribution, vol. 152, no. 3, pp. 415-421, March 2005.
[92] 楊智超,應用類神經網路於汽電共生廠卸載策略之研究,碩士論文,高雄應用科技大學,民國九十七年。
[93] 林冠甫,離岸風場因系統故障之忍受能力研究,碩士論文,中山大學,民國九十六年。
[94] 羅華強,類神經網路-MATLAB的應用,清蔚科技圖書,民國90年
[95] 葉怡成,神經網路模式應用與實作,儒林圖書,民國92年。
[96] R. Winter and B. Widrow, "MADALINE RULE II: A training algorithm for neural networks," IEEE International Conference on Neural Networks, pp. 401-408, 1988.
[97] M. T. Hagan and M. B. Menhaj, "Training feedforward networks with the Marquardt algorithm," IEEE Transactions on Neural Networks, pp. 989-993, 1994.
[98] J. S. Roger Jang and E. Mizutani, "Levenberg-Marquardt method for ANFIS learning," Proceedings of the Biennial Conference of the North American, Fuzzy Information Processing Society, pp. 87-91, 1996.
[99] M. T. Hagan, H. B. Demuth, and Beale, Neural Network Design, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔