(18.232.50.137) 您好!臺灣時間:2021/05/07 03:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊才鋒
研究生(外文):Tsai-feng Yang
論文名稱:液相沉積二氧化鈦作為薄膜電晶體閘極氧化層之研究
論文名稱(外文):Titanium Oxide Prepared by Liquid Phase Deposition and Acted as Gate Oxide on Thin Film Transistors
指導教授:李明逵
指導教授(外文):Ming-Kwei Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:90
中文關鍵詞:二氧化鈦薄膜電晶體液相沉積法
外文關鍵詞:LPDTitanium OxideTFT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本研究論文中,我們以液相沉積法(LPD)備製二氧化鈦(TiO2)作為薄膜電晶體閘極氧化層在非晶矽及多晶矽基板上之研究,並在沉積二氧化鈦薄膜之後製作薄膜電晶體(TFT)元件。
在本實驗中,我們量測使用液相沉積法備製的二氧化鈦的物性、化性及電性並討論其特性,我們利用掃描式電子顯微鏡(SEM)觀察二氧化鈦的表面及厚度,X光繞射儀(XRD)分析結晶性,傅立葉紅外線光譜儀(FTIR)與X光光電子能譜儀(XPS),電性部分使用B1500A量測電流-電壓特性及漏電流,使用E4280A量測電容-電壓特性及介電常數。
在薄膜電晶體之研究中,在二氧化鈦薄膜特性部份,已對其物理、化學、與電性部分,完成其特性分析。針對薄膜應用於薄膜電晶體元件中,已完成光罩製作、基板薄膜結構(mesa)定義、薄膜沉積、閘極定義、微影蝕刻,目前正在進行離子佈值製作過程中。
In this study, we deposit titanium dioxide (TiO2) as gate oxide on thin film transistor (TFT) by liquid phase deposition (LPD) on the amorphous silicon (a-Si) and polycrystalline silicon (poly-Si) substrates. After depositing LPD-TiO2 film, we use to fabricate TFT device.
In our experiment, we do some measurement about physical, chemical and electrical properties for LPD-TiO2 film and discussed with them. the TiO2 film morphology and thickness was characterized by scanning electron microscopy ( SEM ), structure was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and chemical properties was characterized by X-ray photoelectron spectroscopy (XPS),and electrical properties was characterized by leakage current: current-voltage (B1500A) and dielectric constant: capacitance-voltage (E4280A).
In TFT device study, we complete measurement about physical, chemical and electrical properties for LPD-TiO2 films. The LPD-TiO2 film was used as TFT device,
We complete mask manufacture, mesa structure definition, deposit TiO2 thin film, gate definition, photolithography and ICP- etching. Ion implantation is carrying out.
CHAPTER 1 1
INTRODUCTION 1
1-1 Background 1
1-2 Liquid Crystal Drive Schemes 1
1-2.1 Passive Matrix 2
1-2.2 Active Matrix 2
1-3 Development of TFTLCD 3
1.4 Structure of TFT 3
1.5 Properties of High-k Materials of TiO2 4
1-6 Various Techniques for TiO2 Film Preparation 5
1-7 Advantages of Liquid Phase Deposition 5
CHAPTER 2 11
EXPERIMENTS 11
2-1 Deposition System 11
2-2 Cleaning of Substrate 12
2-3 Preparation of Deposition Solution 13
2-4 Film Deposition 13
2-5 Growth Mechanisms of LPD-TiO2 Films 14
2-6 Improvements of Electrical Properties 15
2-6.1 Annealing LPD-TiO2 films in N2 and O2 ambient 15
2-7 Characteristics 15
2-7.1 Physical and Chemical Properties 15
2-7.2 Electrical Properties 16
2-8 TFT Fabrication 18
2-8.1 Mesa Structure 18
2-8.2 Self-align and Overetching 18
2-8.3 Ion Implantation 19
Chapter 3 28
Results and Discussion 28
3-1 LPD-TiO2 Film on a-Si Substrate 29
3-1.1 Deposition Rate of LPD-TiO2 Films as a Function of H3BO3 Concentration 29
3-1.2 FE-SEM Views of LPD-TiO2 Film 30
3-1.3 ESCA Analysis of LPD-TiO2 Films 30
3-1.4 Leakage Current Densities of LPD-TiO2 Films as a Function of H3BO3 Concentration 31
3-2 Improvement of The Electrical Characteristics by N2 and O2 Post-annealing 32
3-2.1 XRD Patterns of LPD-TiO2 Films by N2 Annealing 32
Electrical Characteristics of LPD-TiO2 Films by N2 Annealing 33
3-2.3 ESCA Analysis of LPD-TiO2 Films on a-Si by N2 Annealing 34
3-2.4 XRD Patterns of LPD-TiO2 Films by O2 Annealing 34
3-2.5 Electrical Characteristics of LPD-TiO2 Films by O2 Annealing 35
3-2.6 ESCA Analysis of LPD-TiO2 Films by O2 Annealing 36
3-2.7 FTIR Spectra of LPD-TiO2 Films by O2 Annealing 37
3-2.7 Tentative Summary 38
3-3 LPD-TiO2 on Poly-Si 39
3-3.1 Deposition Rate of LPD-TiO2 Films as a Function of H3BO3 Concentration 39
3-3.2 FE-SEM Views of LPD-TiO2 Film 40
3-3.3 ESCA Analysis of LPD-TiO2 Films 40
3-3.4 Leakage Current Densities of LPD-TiO2 Films as a Function of H3BO3 Concentration 41
3-4 Improvement of The Electrical Characteristics by N2 and O2 Post-annealing 42
3-4.1 XRD Patterns of LPD-TiO2 Films by N2 Annealing 42
3-4.2 Electrical Characteristics of LPD-TiO2 Films by N2 Annealing 43
3-4.3 ESCA Analysis of LPD-TiO2 Films on Poly Si by N2 Annealing 43
3-4.4 XRD Patterns of LPD-TiO2 Films by O2 Annealing 44
3-4.5 Electrical Characteristics of LPD-TiO2 Films by O2 Annealing 45
3-4.6 ESCA Analysis of LPD-TiO2 Films by O2 Annealing 46
3-4.7 FTIR Spectra of LPD-TiO2 Films by O2 Annealing 46
3-5 TFT Fabrication 47
3-5.1 mask manufacture 47
3-5.2 Mesa Structure 47
3-5.3 TiO2 Film Deposition and Gate Definition 47
3-5.4 Ion Implantation 48
References 70
Chapter 4 76
Conclusions 76
[1] T. Yamazaki, H. Kawakami, and H. hori, Color TFT liquid crystal displays, Chap.1, 1996. (SEMI Stand FPD Technology Group)
[2] T. Yamazaki, H. Kawakami, and H. hori, Color TFT liquid crystal displays, Chap.2, 1996. (SEMI Stand FPD Technology Group)
[3] M. J. Powell, “The physics of amorphous-silicon thin film transistors,” IEEE Trans. Electron Devices, vol. 36, pp. 2753-2763, 1989.
[4] T. Inoue, T. Ohsuna, Y. Obara, Y. Yamamoto, M. Yamamoto, M. Satoh, and Y. Sakurai, “Intermediate Amorphous Layer Formation Mechanism at the Interface of Epitaxial CeO2 Layers and Si Substrates,” Jpn. J. Appl. Phys. Part 1, vol. 32, pp. 1765-1767, 1993.
[5] L. Manchanda and M. Gurvitch, “Yttrium oxide/silicon dioxide: a new dielectric structure for VLSI/ULSI circuits,” IEEE Electron Device Lett., vol. 9, pp. 180-182, 1988.
[6] K. P. Pande, V. K. R. Nair, and D. Gutierrez, “Plasma enhanced metal-organic chemical vapor deposition of aluminum oxide dielectric film for device applications,” J. Appl. Phys., vol. 54, pp. 5436-5440, 1983.
[7] P. K. Roy and I. C. Kizilyalli, “Stacked high-ε gate dielectric for gigascale integration of metal–oxide–semiconductor technologies,” Appl. Phys. Lett., vol. 72, pp. 2835-2837, 1998.
[8] C. S. Kang, R. Choi, H. J. Cho, Y. H. Kim, and J. C. Lee, “Scaling down of ultrathin HfO2 gate dielectrics by using a nitrided Si surface,” J. Vac. Sci. Technol. B, vol. 22, pp. 916-919, 2004.
[9] J. Koo, Y. Kim, and H. Jeon, “ZrO2 Gate Dielectric Deposited by Plasma-Enhanced Atomic Layer Deposition Method,” Jpn. J. Appl. Phys. Part 1, vol. 41, pp. 3043-3046, 2002.
[10] H. Kim, D. C. Gilmer, S. A. Campbell, and D. L. Polla, “Leakage current and electrical breakdown in metal-organic chemical vapor deposited TiO2 dielectrics on silicon substrates,” Appl. Phys. Lett., vol. 69, pp. 3860-3862, 1996.
[11] Y. Jeon, B. H. Lee, K. Zawadzki, W. Qi, and J. C. Lee, “Effect of Barrier Layer on the Electrical and Reliability Characteristics of High-k Gate Dielectric Films,” Tech. Dig. Int. Electron Devices Meet., pp. 797-800, 1998.
[12] R. M. Wallace, University of North Texas.
[13] Jack C. Lee, “Ultra-thin gate dielectrics and High-k dielectrics,” IEEE EDS vanguard series of independent short courses.
[14] T. Kamada, M. Kitagawa, M. Shibuya, and T. Hirao, “Structure and Properties of Silicon Titanium Oxide Films Prepared by Plasma-Enhanced Chemical Vapor Deposition Method,” Jpn. J. Appl. Phys. vol. 30, pp. 3594-3596, 1991.
[15] H. Shin, M. R. D. Guire, and A. H. Heuer, “Electrical properties of TiO2 thin films formed on self-assembled organic monolayers on silicon,” J. Appl. Phys., vol. 83, pp. 3311-3317, 1998.
[16] H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M. A. Fox, C. Louis, and M. Che, “Characterization of Titanium-Silicon Binary Oxide Catalysts Prepared by the Sol-Gel Method and Their Photocatalytic Reactivity for the Liquid-Phase Oxidation of 1-Octanol,” J. Phys. Chem. B, vol. 102, pp. 5870-5875, 1998.
[17] N. Rasusch and E. P. Burt, “Thin high-dielectric TiO2 films prepared by low pressure MOCVD,” Engineering, vol. 19, p. 725, 1992.
[18] S. C. Sun and T. F. Chen, “Effects of electrode Materials and Annealing Ambients on the Electrical Properties of TiO2 Thin Films by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. Part 1, vol. 36, pp. 1346-1350, 1997.
[19] D. Mardare and G. I. Rusu, “Structural and electrical properties of TiO2 RF sputtered thin films,” Mater. Sci. & Engin., vol. B75, pp. 68-71, 2000.
[20] E. Haro-Poniatowski, R. Rodr′guez-Talavera, M. de la Cruz Heredia, O. Cano-Corona, and R. Arroyo-Murillo, “Crystallization of nanosized titania partides prepared by the sol-gel process”, J. Mater. Res., vol. 9, p. 2102-2108, 1994.
[21] M. K. Lee, J. J. Huang, C. M. Shih, and C. C. Cheng, “Properties of TiO2 thin-films on InP substrate prepared by liquid-phase deposition,” Jpn. J. Appl. Phys., vol. 41, pp. 4689-4690, 2002.
[22] M. K. Lee, and B. H. Lei, “Characterization of titanium-oxide films prepared by liquid-phase deposition using hexafluorotitanic acid,” Jpn. J. Appl. Phys., vol. 39, pp. L101-L103, 2000.
[23] X. P. Wang, Y. Yu, X. F. Hu, and L. Gao, “Hydrophilicity of TiO2 films prepared by liquid-phase deposition,” Thin Solid Films, vol. 371, pp. 148-152, 2000.
[24] H. B. Sharma and H. N. K. Sarma, “Electrical Properties of Sol-Gel Processed Barium Titanate Films,” Thin Solid Films, vol. 330, Iss. 2, pp. 178-182, 1998.
[25] G. D. Wilk and R. M., Wllace, “Electrical properties of hafnium silicate gate dielectrics deposited directly on silicon,” Appl. Phys. Lett., vol. 74, pp. 2854-2856, 1999.
[26] H. Nagayama, H. Honda, and H. Kamahara, “A New Process for Silica Coating,” J. Electrochem. Soc., vol. 135, Iss. 8, pp. 2013-2016, 1988.
[27] Shu-Ming Chang, “The Electrical Properties of Liquid-Phase
Deposited SiOF Films with Annealing Treatment”, 2003.
[28] A. Hishinuma, T. Goda, M. Kitaoka, S. Hayashi, and H. Kawahara,
“Formation of Silicon Dioxide Films in Acidic Solution,” Applied
Surface Sci., vol. 48, pp. 405-408, 1991.
[29] C. F. Yeh and C. L. Chen, “Bond-Structure Changes of Liquid-Phase
Deposited Oxide (SiO2-xFx) on N2 Annealing,” Appl. Phys. Lett., vol.66, pp. 938-940, 1995

[30] M. K. Lee, W. H Shieh, C. M Shih, K. W Tung, “High-quality nitrogen-doped fluorinated silicon oxide films prepared by temperature-difference-based liquid-phase deposition”J. Phys. Chem. B, vol. 107, pp. 12700-12704, 2003
[31] Z.L. Liu, B. Guo, L. Hong, H.X. Jiang, J. Phys. Chem. Solids 66, 161–167, 2005
[32] A. Bensalem, F. Bozon-Verduraz, M. Delamar, G. Bugli, Appl. Catal. A:Gen. 121 (1995) 81–93.J. Pouilleau, D. Devilliers, H. Groult, P. Marcus, J. Mater. Sci. 32 5645, 1998
[32] A. Iwabuchi, C. Choo, K. Tanaka, 2004, J. Phys. Chem. B, 108 10863-10871
[33] M. K.Lee, J. J. Huang, T. S. Wu, “Low leakage current fluorinated LPD-SiO2/MOCVD-TiO2 films,” Electrochem. solid-State Lett. vol. 8 pp. F8-F11, 2005.

[34] P. J. Wright and K. C. Saraswat, “The Effect of Fluorine in Silicon Dioxide Gate Dielectrics”, IEEE Trans. Electron Devices, vol. 36, pp. 879, 1989.
[35] E. Cartier, D. A. Buchanan, and G. J. Dunn,“Atomic Hydrogen-Induced Interface Degradation of Reoxidized-Nitrided Silicon Dioxide on Silicon”, Appl. Phys. Lett., vol. 64, pp. 901, 1994.
[36] W. S. Lu and J. G. Hwu, “Preparation of Fluorinated Gate Oxides by Liquid-Phase Deposition Following Rapid Thermal-Oxidation”, Appl. Phys. Lett., vol. 66, pp. 3322, 1995.
[37] W. J. Chang, M. P. Houng, and Y. H. Wang, “Trap Concentration Dependence on the Electrical Properties of Annealed Ultrathin Fluorinated Silicon Oxides”, Jpn. J. Appl. Phys., vol. 40, pp. 1300, 2001.
[38] G. Q. Lo, W. C. Ting, D. K. Shih, and D. L. Kwong, “Study of Interface State Generation in Thin Oxynitride Gate Dielectrics Under Hot-Electron Stressing”, Electron. Lett., vol. 25, pp. 1354, 1989.
[39] Jia-Ming Yu, “Preparation of silicon titanium oxide based on hexafluorotitanic acid for next generation gate oxide”, 2004.
[40] Tsung-Shiun Wu, “High Dielectric Constant and Low Leakage Current TiO2 Thin Films on Silicon”, 2004.
[41] Chung-Min shih, “Deposition and applications of titanium oxide by liquid phase deposition”, 2005.
[42] M. K. Lee, J. J. Huang, and T. S. Wu, “Low Leakage Current Fluorinated LPD-SiO2/MOCVD-TiO2 film,” Electrochem. solid-State Lett., vol. 8,.pp. F8-F11, 2005.
[43] C. J. Huang, “Proper Annealing for Enhanced Quality of Silicon Dioxide Thin Film on Gallium Arsenide,” Electrochem. and solid-State Lett., vol. 4, pp. F21-F23, 2001
[44] CHINESE JOURNAL OF CATALYSIS Volume 28, Issue 3, March 2007
[45] P. Madhu Kumar, S. Badrinarayanan, and Murali Sastry, “Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states,” Vol. 358, no. 1-2 , pp. 122-13010, 2000.
[46] D. F. Cox, T. B. Fryberger, and S. Semancik, “Oxygen vacancies and defect electronic states on the SnO2 (100)-1x1 surface,” Phys. Rev. B, vol. 38, pp.2072-2085 1988.
[47] P. Czuprynski and O. Joubert, “X-ray photoelectron spectroscopy analyses of silicon dioxide contact holes etched in a magnetically enhanced reactive ion etching reactor,” J. Vac. Sci. Technol. B, vol. 16, no. 3, pp. 1051-1058, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔