跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/03/01 08:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡坤翰
研究生(外文):Kun-Han Tsai
論文名稱:在使用空頻編碼之多輸入多輸出正交分頻多工系統中降低峰均功率比值之方法
論文名稱(外文):A PAPR Reduction Scheme for SFBC MIMO-OFDM Systems
指導教授:李志鵬李志鵬引用關係
指導教授(外文):Chih-Peng Li
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:71
中文關鍵詞:峰均值功率比多重輸入多重輸出空頻區塊碼正交分頻多工
外文關鍵詞:Orthogonal frequency division multiplexing (OFDM)multiple-input multiple-output (MIMO)peak-to-average power ratio (PAPR)space frequency block coding (SFBC)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在多重輸入多重輸出(Multiple-Input Multiple-Output, MIMO)多天線的正交分頻多工(Orthogonal Frequency Division Multiplexing, OFDM)系統中使用空頻區塊碼(Space Frequency Block Coding, SFBC)的架構下,針對多根傳送天線分別降低峰均值功率比值(Peak-to-Average Power Ratio, PAPR),提出兩個在傳送端簡化運算複雜度的新架構。依照SFBC架構M根傳送天線下編碼的特性,分別藉由時域上不同的轉換向量(Conversion Vector)與訊號的環形旋積(Circular Convolution)與縮小反快速傅立葉轉換(Inverse Fast Fourier Transform, IFFT)運算器的兩種方式得到,可等間隔分離出頻域上的子載波群(Subcarrier Groups),因此可在時域上進行SFBC編碼運算,藉由與U個不同的子載波群,在時域上做不同循環位移(Cyclic Shifts)與相位旋轉(Phase Rotations)的組合在不增加IFFT運算器個數的情況下,產生出P組不同PAPR值的候選訊號,用以取代SFBC MIMO-OFDM架構在傳統SLM(Selected Mapping)方法上產生P組候選訊號將所需付出MP個IFFT運算器的高運算複雜度,然而在損失極小降PAPR的系統效能下,大幅的減低系統運算複雜度。
In multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system which was used space frequency block coding (SFBC) method. It order to reduce the peak-to-average power ratio in several transmit antennas. We proposed two new architectures to simply the computational complexity on transmitter. According to the characteristics of SFBC structure which have M transmitter antennas. We can decomposed the interleaving subcarrier groups by used conversion vector to circular convolution with signal vector and shrink the inverse fast Fourier transform (IFFT) points. Therefore it can do the SFBC coding operation in time domain. By using combination of different cyclic shifts and phase rotations in U subcarrier groups can generate the P candidate signals. And it wouldn’t increase the number of IFFT. The proposed transmitter architectures can improve the major drawback of high computational complexity in traditional selected mapping (SLM). The traditional SLM generate the P candidate signals needs MP IFFT units. Then in the condition of lose a little PAPR reduction performance, we can save the most of computational complexity.
目錄
第一章 導論 1
1.0 引言 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文架構 3
第二章 系統架構 4
2.0 引言 4
2.1 正交分頻多工系統的架構 4
2.2 SFBC MIMO-OFDM系統架構 6
2.4 OFDM訊號的峰均值功率比 11
第三章 SFBC架構下常見的降低PAPR方法 15
3.0 引言 15
3.1 SELECTED MAPPING 15
3.2 POLYPHASE INTERLEAVING AND INVERSION 17
3.3 AMPLITUDE CLIPPING AND ITERATIVE RECONSTRUCTION OF CLIPPED SIGNALS 20
第四章 低複雜度SFBC MIMO-OFDM傳送端架構 21
4.0 引言 21
4.1 系統上的時域特性 21
4.2 低複雜度系統架構 31
4.2.1 低複雜度傳送端架構一 31
4.2.2低複雜度傳送端架構二 35
4.3利用時域特性降低PAPR的方法 36
第五章 系統架構的複雜度分析 43
5.0引言 43
5.1不同架構的複雜度分析 43
5.1.1 低複雜度傳送端架構一 44
5.1.2低複雜度傳送端架構二 45
5.2候選訊號複雜度分析 46
第六章 PAPR效能模擬分析 50
6.0 引言 50
6.1 循環位移法效能模擬 50
6.2 利用相位旋轉法效能模擬 52
第七章 結論 54
中英對照表 55
全名縮寫對照表 58
參考文獻 60
參考文獻
[1]S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun., vol. 12, no. 2, pp. 56-65, Apr. 2005.
[2]D. Wulich and L. Goldfeld, “Reduction of peak factor in orthogonal multicarrier modulation by amplitude limiting and coding,” IEEE Trans. Commun., vol. 47, no. 1, pp. 18-21, Jan. 1999.
[3]X. Li and L. J. Cimini Jr., “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol. 2, no. 5, pp. 131-133, May 1998.
[4]V. Tarokh and H. Jafarkhani, “On the computation and reduction of the peak-to-average power ratio in multicarrier communication,” IEEE Trans. Commun., vol. 48, no. 1, pp. 37-44, Jan. 2000.
[5]T. Ginige, N. Rajatheva, and K. M. Ahmed, “Dynamic spreading code selection method for PAPR reduction in OFDM-CDMA systems with 4-QAM modulation,” IEEE Commun. Lett., vol. 5, no. 10, pp. 408-410, Oct. 2001.
[6]K. Yang and S. Chang, “Peak-to-average power control in OFDM using standard arrays of linear block codes,” IEEE Commun. Lett., vol. 7, no. 4, pp. 174-176, Apr. 2003.
[7]B. S. Krongold and D. L. Jones, “PAR reduction in OFDM via active constellation extension, ” IEEE Trans. Broadcast., vol. 49, no. 3, pp. 258-268, Sep. 2003.
[8]A. Saul, “Generalized active constellation extension for peak reduction in OFDM systems,” in Proc. IEEE Int. Conf. Commun. (ICC 2005), Seoul, Korea, Sep. 2005, vol. 3, pp. 1974-1979.
[9]S. W. Kim, H. S. H. Byeon, J. K. Kim, and H.-G. Ryu, “An SLM-based real-time PAPR reduction method using dummy sequence insertion in the OFDM communication,” IEEE. Int. Conf. Inform Commun. Signal Process. (ICICS 2005), Bangkok, Thailand, Oct. 2005, pp. 258-262.
[10]M. Breiling, S. H. Muller, and J. B. Huber, “SLM peak-power reduction with explicit side information,” IEEE. Commun. Lett., vol. 5, no. 6, pp. 239-241, Jun. 2001.
[11]C.-L. Wang and Y. Ouyang, “Low-complexity selected mapping schemes for peak-to-average power ratio reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 53, no. 12, pp. 4652-4660, Dec. 2005.
[12]S. J. Heo, H. S. Noh, J. S. No, and D. J. Shin, “A modified SLM scheme with low complexity for PAPR reduction of OFDM systems,” IEEE Trans. Broadcast., vol. 53, no. 4, pp. 804-808, Dec. 2007.
[13]D. W. Lim, J. S. No, C. W. Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett., vol. 12, no. 2, pp. 93-96, Feb. 2005.
[14]S. H. Han and J. H. Lee, “Modified selected mapping technique for PAPR reduction of coded OFDM signal,” IEEE Trans. Broadcast., vol. 50, no. 3, pp. 335-341, Sep. 2004.
[15]S. G. Kang, J. G. Kim, and E. K. Joo, “A novel subblock partition scheme for partial transmit sequence OFDM,” IEEE Trans. Commun., vol. 45, no. 9, pp. 333-338, Sep. 1999.
[16]A. Ghassemi and T. A. Gulliver, “A low-complexity PTS-based radix FFT method for PAPR reduction in OFDM system,” IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1161-1166, Mar. 2008.
[17]C. Tellambura, “Improved phase factor computation for the PAR reduction of an OFDM signal using PTS,” IEEE Commun. Lett., vol. 5, no. 4, pp. 135-137, Apr. 2001.
[18]L. Yang, R. S. Chen, Y. M. Siu, and K. K. Soo, “PAPR reduction of an OFDM signal by use of PTS with low computational complexity,” IEEE Trans. Broadcast., vol. 52, no. 1, pp. 83-86, Mar. 2006.
[19]Y. Xiao, X. Lei, Q. Wen, and S. Li, “A class of low complexity PTS techniques for PAPR reduction in OFDM systems,” IEEE Signal Process. Lett., vol. 14, no. 10, pp. 680-683, Oct. 2007.
[20]M. Tan, Z. Latinovic, and Y. Bar-Ness, “STBC MIMO-OFDM peak-to-average power ratio reduction by cross-antenna rotation and inversion,” IEEE Commun. Lett., vol. 9, no. 7, pp. 592-594, Jul. 2005.
[21]H. Lee and M.P. Fitz, “Unitary peak power reduction in multiple transmit antennas, ”IEEE Trans. Commun., vol. 56, no. 2, pp. 234-244, Feb. 2008.
[22]Z. Li and X.-G. Xia, “PAPR reduction for repetition space-time-frequency coded MIMO-OFDM systems using Chu sequences,” IEEE Trans. Wireless Commun., vol. 7, no. 4, pp. 1195-1202, Apr. 2008.
[23]R. F. H. Fischer and M. Hoch, “Directed selected mapping for peak-to-average power ratio reduction in MIMO OFDM,” Electron. Lett., vol. 42, no. 22, pp. 1289-1290, Oct. 2006.
[24]R. F. H. Fischer and M. Hoch, “Peak-to-average power ratio reduction in MIMO OFDM,” in Proc. IEEE Int. Conf. Commun. (ICC 2007), Glasgow, Scotland, Jun. 2007, pp. 762-767.
[25]Z. Latinovic and Y. Bar-Ness, “SFBC MIMO-OFDM peak-to-average power ratio reduction by polyphase interleaving and inversion,” IEEE Commun. Lett., vol. 10, no. 4, pp. 266-268, Apr. 2006.
[26]Z. Wang and Y. Bar-Ness, ”Peak-to-average power ratio reduction by polyphase interleaving and inversion for SFBC MIMO-OFDM with generalized complex orthogonal code,” in Proc. IEEE Conf. Inform. Sci. and Syst. (CISS 2006), Princeton, NY, USA, Mar. 2006, pp. 317-320.
[27]U.-K. Kwon, D. Kim, and G.-H. Im, “Amplitude clipping and iterative reconstruction of MIMO-OFDM signals with optimum equalization,” IEEE Trans. Wireless Commun., vol. 8, no. 1, pp. 268-277, Jan. 2009.
[28]S. M. Alamouti, “A simple transmit diversity technique for wireless communications, ” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1451-1458, Oct. 1998.
[29]V. Tarokh, H. Jafarkhaniand, and A. R. Calderband, “Space-time block codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1456-1467, Jul. 1999.
[30]H. Jafarkhani and A. R. Calderband, ”A quasi-orthogonal space-time block code,” IEEE Trans. Commun., vol. 49, no. 1, pp. 1-4, Jan. 2001.
[31] J. Kim, S. L. Ariyavisitakul, and N. Seshadri, “STBC/SFBC for 4 transmit antennas with 1-bit feedback,” in Proc. IEEE Int. Conf. Commun. (ICC 2008), Beijing, China, May 2008, pp. 3943-3947.
[32]C. Tellambura, “Computation of the continue-time PAR of an OFDM signal with BPSK subcarriers,” IEEE Commun. Lett., vol. 5, no. 5, pp. 185-187, May 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊