(3.239.56.184) 您好!臺灣時間:2021/05/13 12:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳鼎融
研究生(外文):Ting-jung Chen
論文名稱:圓形及環形壓電板之混合型有限元素分析
論文名稱(外文):Analysis of Circular and Annular Piezoelectric Plates by a Mixed Finite Element
指導教授:劉崇富劉崇富引用關係
指導教授(外文):Chorng-Fuh Liu
學位類別:博士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:117
中文關鍵詞:圓形板混合型有限元素壓電
外文關鍵詞:circular platemixed finite elementpiezoelectric
相關次數:
  • 被引用被引用:2
  • 點閱點閱:262
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對壓電圓形及環形板的靜態與振動分析,發展一種混合型有限元素列式,此列式結合傳統的位移-電位列式及piezoelectric Reissner`s principle,並給予相對權重;權重則透過與實驗值比較來調整。藉由這種列式,應力及電位移會如同位移及電位一樣是主要的變數,不只在元素內部而且在元素間也可以保證連續;在分析時,包含位移、應力、電位和電位移邊界條件也可以正確的加上。使用此種方法,本文分析一些典型圓形及環形壓電板的靜態變形及自由振動頻率,並且和其他方法的結果相互比較。研究結果發現,若以本文所比較的實驗結果為基準,則使用本文的混合型列式,並取權重因子為1時,一般可以得到比其他列式更準確的結果。
The present study developes a mixed finite element formulation for the analysis of piezoelectric circular and annular plates. This formulation combines the conventional displacement-electric potential type variational principle and the piezoelectric Reissner`s principle with a weighting factor which represents ratio of weights imposed on the above two variational principles, and which can be adjusted by comparing with experiment results. With this formulation, stresses and electric displacements, like displacements and electric potential, are primary variables and are continuous across elements and element interfaces. Also, all displacement, stress, electric displacement, and electric potential boundary conditions can be easily and exactly imposed. Static deformations and vibration frequencies of some typical piezoelectric circular and annular plates are then obtained with the present approach and are compared with those by other methods. Based on experiment results in the literature, it is found that better results could be obtained in general by the present mixed finite element formulation than the others when 1 is chosen as the weighting factor.
摘要 i
ABSTRACT ii
目錄 iii
表目錄 vi
圖目錄 vii
符號說明 ix

第一章 緒論 1

1.1 研究目的與源起 1
1.2 相關研究背景 2
1.2.1 壓電現象[1] 2
1.2.2 線彈性壓電理論 3
1.2.3 固體力學變分原理[2] 5
1.3 文獻回顧 6
1.3.1 圓形及環形壓電板的靜態變形問題 7
1.3.2 圓形及環形壓電板的自由振動問題 10
1.3.3 變分理論應用於壓電材料 13
1.4 全文架構 16

第二章 壓電板的自由振動分析 19

2.1 簡介 19
2.2 軸對稱元素 19
2.3 場變數 20
2.4 相容方程式 (compatibility equations) 23
2.5 物性方程式 (constitutive equations) 24
2.6 變分列式 27
2.7 圓形壓電板自由振動分析(一) 38
2.7.1 問題描述 38
2.7.2 結果與討論 39
2.8 圓形壓電板自由振動分析(二) 47
2.8.1 問題描述 47
2.8.2 結果與討論 48
2.9 環形壓電板自由振動分析 49
2.9.1 問題描述 49
2.9.2 結果與討論 50

第三章 壓電板的靜態變形分析 70

3.1 簡介 70
3.2 軸對稱元素 70
3.3 場變數 71
3.4 物性方程式及相容方程式 72
3.5 變分列式 72
3.6 部份電極圓形壓電板電極邊緣的電彈場集中現象 76
3.6.1 問題描述 76
3.6.2 結果與討論 78

第四章 結論與建議 88

4.1結論 88
4.2建議 89

參考文獻 90
附錄一:無阻尼自由振動方程式元素矩陣細部 98
附錄二:靜態變形方程式元素矩陣細部 102
[1]周卓明,壓電力學,全華科技圖書,台北,2003
[2]K. H. Huebner, The Finite Element Method for Engineers, John Wiley and Sons, New York, pp.197, 1982
[3]H. F. Tiersten, Linear Piezoelectric Plate Vibrations, Plenum Press, New York, 1969
[4]W. J. Spencer, W. T. Corbett, L. R. Dominguez and B. D. Shafer, An Electronically Controlled Piezoelectric Insulin Pump and Valves, IEEE Transactions on Sonics and Ultrasonics, Vol.25, pp.153-167, 1978
[5]S. Dong, X. Du, P. Bouchilloux and K. Uchino, Piezoelectric ring-morph actuation for valve application, Journal of Electroceramics, Vol.8, pp.155-161, 2002
[6]L. Cao, S. Mantell and D. Polla, Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology, Sensors and actuators, Vol. A 94 ,pp 117-125,2001
[7]A. Olsson, G. Stemme and E. Stemme, A valveless planar fluid pump with two pump chambers, Sensors and Actuators A:Physical, Vol.46-47, pp.549-556, 1995
[8]A. Olsson, G. Stemme and E. Stemme, Diffuser-element design investigation for valveless pumps, Sensors and Actuators A:Physical, Vol.57, pp.137-143, 1996
[9]M. Koch, N. Harris, A. Evans, N. White and A. Brunnschweiler, A novel micromachined pump based on thick-film piezoelectric actuation, Sensors and Actuators A:Physical, Vol.70, pp.98-103, 1998
[10]A. Ullmann, The piezoelectric valve-less pump performance enhancement analysis, Sensors and Actuators A:Physical, Vol.69, pp.97-105, 1998
[11]T. Zhang and Q. M. Wang, Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell (DMFC) devices, Journal of Power Sources, Vol.140, pp.72-80, 2005
[12]T. Zhang and Q. M. Wang, Performance evaluation of a valveless micropump driven by a ring-type piezoelectric actuator, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.53, pp.463-473, 2006
[13]S. F. Li and S. C. Chen, Analytical analysis of a circular PZT actuator for valveless micropumps, Sensors and Actuators A: Physical, Vol.104, No.2, pp.151-161, 2003
[14]S. Timoshenko, Theory of Plates and Shells, 2nd ed., McGraw-Hill, New York, 1940
[15]E. M. Sekouri, Y. R. Hu and A. D. Ngo, Modeling of a circular plate with piezoelectric actuators, Mechatronics, Vol.14, No. 9, pp.1007-1020, 2004
[16]M. Deshpande and L. Saggere, An Analytical model and working equations for static deflections of a circular multi-layered diaphgram-type piezoelectric actuator, Sensors and Actuators A:Physical, Vol.136, pp.673-689, 2007
[17]C. H. J. Fox, X. Chen and S. McWilliam, Analysis of the deflection of a circular plate with an annular piezoelectric actuator, Sensors and Actuators A:Physical, Vol.133, No.1, pp.180-194, 2007
[18]C. J. Morris and F. K. Forster, Optimization of a circular piezoelectric bimorph for a micropump driver, Journal of Micromechanics and Microengineering, Vol.10, pp.459-465, 2000
[19]S. Dong, X. Du, P. Bouchilloux and K. Uchino, Piezoelectric ring-morph actuation for valve application, Journal of Electroceramics, Vol.8, pp.155-161, 2002
[20]T. Takehiro, H. Hiroshi and T. Yoshiro, Analysis of Nonaxisymmetric Vibration Mode Piezoelectric Annular Plate and its Application to an Ultrasonic Motor, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.37, No.6, pp.558-565, 1990
[21]T. Maeno, T. Tsukimoto, and A. Miyake, Finite-element analysis ofthe rotor/stator contact in a ring-type ultrasonic motor, IEEETransactions on Ultrasonics, Ferroelectrics and Control, Vol.39, No.6, pp.668-674, 1992
[22]J. R. Friend and D. S. Stutts, The dynamics of an annularpiezoelectric motor stator, Journal of Sound and Vibration, Vol.204, No.3, pp.421-437, 1997
[23]N. W. Hagood and A. J. McFarland, Modeling of a piezoelectricrotary ultrasonic motor, IEEE Transactions on Ultrasonics,Ferroelectrics and Control, Vol.42, No.2, pp.210-224, 1995
[24]P. Hagedorn, T. Sattel, D. Speziari, J. Schmidt and G. Diana, The importance of the rotor flexibility in ultrasonic traveling wave motors, Smart Materials and Structures, Vol.7, pp.352-368, 1998
[25]R. L. Letty, F. Claeyssen, N. Lhermet, B. Hamonic, J. N. Decarpigny and R. Bossut, Combined Finite Element-NormalMode Expansion Methods in Electroelasticity and Their Applicationto Piezoactive Motors, International Journal for NumericalMethods in Engineering, Vol.40, pp.3385-3403, 1997
[26]X. Bao and Y. B. Cohen, Complete modeling of rotary ultrasonic 75 motors actuated by traveling flexural waves, Proceedings of SPIE -The International Society for Optical Engineering, Vol.3992, pp.677-686, 2000
[27]N. Guo and P. Cawley, The finite element analysis of the vibration characteristics of piezoelectric discs, Journal of Sound and Vibration, Vol.159, pp.115-138, 1992
[28]N. Kharouf and P. R. Heyliger, Axisymmetric free vibration of homogeneous and laminated piezoelectric cylinders, Journal of Sound and Vibration, Vol.174, pp.539-561, 1994
[29]P. R. Heyliger and D. A. Saravanos, Exact free vibration analysis of laminated plates with embedded piezoelectric layers, Journal of the Acoustical Society of America, vol.98, pp.1547-1557, 1995
[30]I. Akio and S. Hitoshi, Two-dimensional analysis using one-dimensional FEM for straight-crested waves in arbitrary anisotropic crystal plates and axisymmetric piezoelectric vibrations in ceramic disks, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.43, pp.811-817, 1996
[31]H. Ding, R. Xu, Y. Chi and W. Chen, Free axisymmetric vibration of transversely isotropic piezoelectric circular plates, International Journal of Solids and Structures, Vol.36, pp.4629-4652, 1999
[32]P. R. Heyliger and G. Ramirez, Free Vibration of Laminated Circular Piezoelectric Plates and Discs, Journal of Sound and Vibration, Vol.229, No.4, P 935-956, 2000
[33]E. A. G. Shaw, On the resonant vibrations of thick barium titanate disks, Journal of Acoustical Society of America, Vol. 28, pp. 9-50, 1956
[34]I. Seiji, U. Ichiro and K. Shigeru, Frequency Spectra of Resonant Vibration in Disk Plates of Piezoelectric Creamics, Journal of the Acoustic Society of America, Vol.55, No.2, pp.339-344, 1974
[35]S. Ikegami, I. Ueda and S. Kobayashi, Frequency spectra of resonant vibration in disk plates of PbTiO3 piezoelectricceramics. Jorunal of Acoustical Society of America Vol.55, pp.339-344, 1974
[36]S. Ueha, S. Sakuma and E. Mori, Measurement of vibration velocity distributions and mode analysis in thick disks of Pb(Zr.Ti)O3, Journal of Acoustical Society of America, Vol. 73, pp. 1842-1847, 1983
[37]Y. C. Lin and C. C. Ma, Experimental Measurement andNumerical Analysis on Resonant Characteristics of Piezoelectric Disks whit Partial Electrode Designs, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.51, No.8, pp.937-947, 2004
[38]李英德,軸對稱負載作用下圓形板及環型板之三維振動分析,博士論文,中山大學機械與機電工程學系,高雄,2000
[39]陳英傑,軸對稱元素應用於超音波馬達定子之三維振動分析,碩士論文,中山大學機械與機電工程學系,高雄,2005
[40]H. Allik and T. J. R. Hughes, Finite element method for piezoelectric vibrator, International Journal for Numerical Methods in Engineering, Vol.2, pp.151-157, 1970
[41]R. D. Mindlin, Equations of High-Frequency Vibrations of Thermopiezoelectric Crystal Plates, International Journal of Solids and Structures, Vol.10, pp.625–637, 1974
[42]M. C. Dökmeci, Recent Advances: Vibrations of Piezoelectric Crystals, International Journal of Engineering Science, Vol.18, pp.431-448, 1980
[43]G. A. Altay and M. C. Dökmeci, Fundamental Variational Equations of Discontinuous Thermopiezoelectric Fields, International Journal of Engineering Science, Vol.34, pp.769-782, 1996
[44]G. A. Altay and M. C. Dökmeci, Electroelastic Plate Equations for High Frequency Vibrations of Thermo-Piezoelectric Materials, Thin-Wall Structure, Vol.39, pp.95-109, 2001
[45]J. S. Yang, Mixed Variational Principles for Piezoelectric Elasticity, Developments in Theoretical and Applied Mechanics, Vol.16, pp.31-38, 1992
[46]J. S. Yang and R. C. Batra, Mixed Variational Principles in Non-Linear Electro-Elasticity, International Journal of Non-Linear Mechanics, Vol.30, pp.719-725, 1995
[47]S. Vidoli and R. C. Batra, Derivation of Plate and Rod Equations for a Piezoelectric Body from a Mixed Three-Dimensional Variational Principle, Journal of Elasticity, Vol.59, pp.23-50, 2000
[48]R. C. Batra and S. Vidoli, Higher-Order Piezoelectric Plate Theory Derived from a Three-Dimensional Variational Principle, AIAA Journal, Vol.40, pp.91-104, 2002
[49]K. Ghandi and N. W. Hagood, A Hybrid Finite Element Model for Phase Transitions in Nonlinear Electro-Mechanically Coupled Material, SPIE, Vol.3039, pp.97-112, 1997
[50]K. Y. Sze and Y. S. Pan, Hybrid Finite Element Models for Piezoelectric Materials, Journal of Sound and Vibration, Vol.226, pp.519-547, 1999
[51]A. Benjeddou and O. Andrianarison, A Piezoelectric Mixed Variational Theorem for Smart Multilayered Composites, Mechanics of Advanced Materials and Structures, Vol.12, pp.1-11, 2005
[52]E. Reissner, On a Certain Mixed Variational Theorem and a Proposed Application, International Journal for Numerical Methods in Engineering, Vol.20, pp.1366-1368, 1984
[53]E. Reissner, On a Mixed Variational Theorem and on Shear Deformable Plate Theory, International Journal for Numerical Methods in Engineering, Vol.23, pp.193-198, 1986
[54]A. Toledano snd H. Murakami, A high-order laminated plate theory with improved in-plane responses, International Journal of Solids and Structures, Vol.23, No.1, pp.111-131, 1987
[55]A. Toledano snd H. Murakami, A high-order mixture model for periodic particulate composites, International Journal of Solids and Structures, Vol.23, No.7, pp.989-1002, 1987
[56]E. Carrera, Developments, Ideas, and Evaluations Based upon Reissner’s Mixed Variational Theorem in the Modeling of Multilayered Plates and Shells, Journal of Applied Mechanics, Vol.54, pp.310-329, 2001
[57]N. M. Rogacheva, The theory of piezoelectric shells and plates, Institute for problems in mechanics Russian Academy of Sciences, Moscow, Russia, 1994
[58]葉承威,壓電無閥式為幫浦致動器之模擬與分析,碩士論文,中山大學機械與機電工程學系,高雄,2007
[59]C. Maurini, J. Pouget and F. D. Isola, On A Model of Layered Piezoelectric Beams Including Transverse Stress Effect, International Journal of Solid and Structures, Vol.41, pp.4473-4502, 2004
[60]IMSL® Fortran Numerical Libraries 5.0, Visual Numerics, Inc., Houston, Texas 77042 USA
[61]S. Y. Lin, Coupled vibration analysis of piezoelectric ceramic disk resonators, Journal of Sound and Vibration, Vol. 218, No.2, pp.205-217, 1998
[62]J. O. Kim and O. S. Kwon, Vibration characteristics of piezoelectric tortional transducers, Journal of Sound and Vibration, Vol. 264, pp.453-473, 2003
[63]Y. Shindo, F. Natia and H. Sosa, Electroelastic analysis of piezoelectric ceramics with surface electrodes, International Journal of Engineers and Sciences, Vol.36, No.9, pp.1001-1009, 1998
[64]R. Q. Ye and L. H. He, Electroelastic analysis of piezoelectric ceramics, International Journal of Solid and Structures, Vol.38, pp.4941-6951, 2001
[65]M. Yoshida, F. Narita, Y. Shindo, M. Karaiwa and K. Horiguchi, Electroelastic field concentration by circular electrodes in piezoelectric ceramics, Smart Materials and Structures, Vol.12, pp.972-978, 2003
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔