(3.238.99.243) 您好!臺灣時間:2021/05/15 19:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃存佑
研究生(外文):Tsun-yu Huang
論文名稱:積層陶瓷電容產品之有限元素模擬分析
論文名稱(外文):Finite Element Analysis on MLCC BME Processes
指導教授:任明華任明華引用關係
指導教授(外文):JEN MING HUA
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:150
中文關鍵詞:積層陶瓷電容有限元素法奈米壓痕
外文關鍵詞:Nano-indentationMulti-Layered Ceramic Capacitors (MLCCs)Finite element method
相關次數:
  • 被引用被引用:3
  • 點閱點閱:4067
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來薄膜的特性已成為熱門的研究議題,亦有針對利用薄膜堆疊數百層後而製程的結構,探討其相關特性及應用等等。以積層陶瓷電容(Multi-layer Ceramic Capacitor, MLCC)為例,源係由一層介電陶瓷薄膜、一層電極薄膜,兩者交互相疊而成之數百層結構,其具有體積小,但電容量可以隨著陶瓷堆疊的層數及面積而增加,及生產速度快的優點,使其成為組成3C產品的必要被動元件之零件產品。
陶瓷薄膜與電極薄膜疊層後會受一均壓作用,再進行燒結。本文主要在探討積層陶瓷電容受均壓後之變形與應力分佈情形,將變形與應力之數值輸出並統整成表格,提供往後相關研究之參考依據。本文所使用的研究理論方法為有限元素法,並使用有限元素模擬分析軟體ANSYS來進行實體模型之建構,將其網格分割後,設定邊界條件並進行求解。
本文模擬出積層陶瓷電容受到垂直均佈壓力、傾斜均佈壓力與梯度均佈壓力後之變形與應力分佈情形,並改變材料之楊氏模數,模擬不同材料受壓之情形,其中垂直均佈壓力與傾斜均佈壓力並非導致積層陶瓷電容側邊變形之主因,將負載條件更改為梯度均佈壓力後,可模擬出符合積層陶瓷電容受壓後側邊之實際變形狀況。
The mechanical and electrical properties of thin films have been become important and urgent in recent years, especially, the laminated structure made by films stacked over hundreds of layers. For example, the Multi-Layered Ceramic Capacitors (MLCCs) are such structures fabricated by one layer ceramic film interleaves with one layer electrode film repeatedly a hundred times. Thus, the advantages of MLCCs include small volume, mass product, and high capacity. That makes the MLCCs the necessary part of passive components.
The Finite element method is adopted in the study. The model is built by the simulation program of ANSYS. After meshing and setting boundary conditions, the numerical process is performed.
The numerical simulation was started first by applying a uniformly distributed pressure on the top of near hundred layers of MLCCs before sintering process with the bottom plate fixed. Then, the displacement and stress fields of MLCCs under five pressures were obtained and discussed. In order to visualize the results, the data of displacement and the stress fields were listed in Tables and plot in Figures.
In addition to the MLCCs under vertically and uniformly distributed pressure, the slightly slant distributed pressure and gradient distributed pressure had been simulated. Next, the results of changing Young’s modulus had also been received. It is found that the vertical distributed pressure and slant distributed pressure were not the main factor led to the side deformation. The lateral constraint of gradient distributed pressure would influence the deformation of the MLCCs significantly.
目次..................................................................................................... I
表目錄.............................................................................................. IV
圖目錄.............................................................................................. VI
中文摘要.......................................................................................... XI
英文摘要.........................................................................................XII
第1 章 緒論.......................................................................................1
1-1 研究動機與目的......................................................................1
1-2 積層陶瓷電容之簡介..............................................................3
1-3 文獻回顧..................................................................................7
1-4 全文概述..................................................................................9
第2 章 研究理論.............................................................................12
2-1 有限元素法............................................................................12
2-2 結構分析之矩陣方法............................................................13
2-3 線性元素................................................................................15
第3 章 實驗工作.............................................................................22
3-1 奈米壓痕法之簡介................................................................22
3-2 儀器設備與材料....................................................................25
3-3 儀器操作流程........................................................................25
3-3-1 試片之放置.....................................................................25
3-3-2 軟體操作步驟.................................................................26
3-3-3 模式設定.........................................................................27
3-4 結果與討論............................................................................30
第4 章 有限元素模型與分析流程.................................................47
4-1 前言.........................................................................................47
4-2 基本假設................................................................................48
4-3 元素種類................................................................................48
4-4 有線元素模型之建構............................................................50
4-5 邊界與負載條件之設定........................................................52
4-6 模擬流程................................................................................53
4-7 後處理分析............................................................................54
4-8 收斂性分析............................................................................56
第5 章 分析結果與討論.................................................................68
5-1 垂直壓力作用之分析............................................................68
5-1-1 分析說明.........................................................................68
5-1-2 分析結果與討論.............................................................69
5-2 傾斜壓力作用之分析............................................................75
5-2-1 分析說明.........................................................................75
5-2-2 分析結果與討論.............................................................76
5-3 梯度壓力作用之分析............................................................79
5-3-1 分析說明.........................................................................79
5-3-2 分析結果與討論.............................................................80
5-4 改變楊氏模數之分析............................................................81
5-4-1 分析說明.........................................................................81
5-4-2 分析結果與討論.............................................................82
第6 章 結論與未來展望...............................................................125
6-1 結論.......................................................................................125
6-2 未來展望..............................................................................126
參考文獻.........................................................................................128
附錄.................................................................................................132
1.陳聰文,積層陶瓷電容器製程簡介,工業材料108期84年12月。

2.黃裕堅,2006被動元件MLCC產業展望,華南產經資訊,42期,32~34頁,2006。

3.Design and Process Guidelines for Use of Ceramic Chip Capacitors CALCE Electronic Products and System Center University of Maryland(1980) .

4.Shin, Y-I., et al., “Internal Stresses in BaTio3/Ni MLCCs,” J. of the European Ceramic Society, Vol. 23, pp. 1427-1434 (2003).

5.Lee, S-G., et al., “Control of Residual Stresses with Post Process in BaTio3-based Ni-MLCCs,” Materials and Design, Vol. 24, pp. 169 -176 (2003).

6.Shin, H., et al., “Investigation of Useful on Deleterious Residual Thermal Stress Component to the Capacitance of a Multilayer Ceramic Capacitor,” Microelectronic Engineering, Vol. 77, pp. 270-276 (2005).

7.Erdahl, D.S. and Ume, I.C., “Online-Office Laser ultrasonic Quality inspection Tool for Multilayer Ceramic Capacitor-Parts Ⅰ andⅡ,” IEEE Transactions on Advanced Packaging, Vol. 27, No. 4, pp. 647-653 (2004) and Vol. 28, No. 2, pp. 264-272 (2005).

8.Park, D-H., et al., “Crack Suppression Behavior with Post-Ceramic International,” Vol. 31, pp. 655-661 (2005).

9.Park, J-S., et al., “Effect of Margin Widths on the Residual Stress in a Multi-layer Ceramic Capacitor,” Microelectronic Engineering, Vol. 83, pp. 2558-2563 (2006).

10.Lee, Y-C, et al., “A Study of Ceramic Addition in End Termination of Multilayer Ceramics Capacitors with Cofiring Process,” Materials Chemistry and Physics, Vol. 100, pp. 355-360 (2006).

11.宋進祥,積層陶瓷電容器之可靠度評估與失效分析,國立成功大學工程科學所碩士論文,31~33頁,2006。

12.Kishi H., Mizuno Y., and Chazono H., “Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives,”Jpn. J. Appl. Phys., 42 [1]1-15(2003)

13.Jonathan L. P., Erik K.R.,2002“Highly accelerated life testing of base-metal-electrode ceramic chip capacitors ” ,Microelectronics Reliability 4, pp.815-820, January

14.Yoon D. H., and Lee B. I., “BaTiO3 Properties and Powder Characteristics for Ceramic Capacitors, ” J. Ceram. Proc. Res.,3 [2]41-47(2002)

15.Taho Y., and Ronald V. O., “Robust Design for a Multilayer Ceramic Capacitor Screen-Printing Process Case Study,” J. Eng. Design, 15 447-457(2004)

16.Jonathan L. P., and Erik K. R., “Highly Accelerated Lifetesting of Base-Metal-Electrode Ceramic Chip Capacitors, ” Microelectronics Reliability 42 815-820(2002)

17.Lin J. N. and Wu L., “Wetting Reaction Between Lithium Fluoride and Barium Titanate,” J. Am. Ceram. Soc., 72(9), 1709-12,1989.

18.Wang C. H., and Wu L., “Lead Borate Glass-A New Sintering Agent for BaTiO3 Ceramics,” Jpn. J. Appl. Phys., 32, 2020-34, 1993.

19.H. C. Ling, A. M. Jackson, “Correlation of Silver Migration with Temperature-Humidity-Bias (THB) Failures in Multilayer Ceramic Capacitors,” IEEE Transactions on Components, Hybrids, And Manufacturing Technology, 12(1), 130-37, March, 1989.

20.Toshio Kobayashi, Hisashi Ariyoshi, and Akihiko Masuda, “Reliability Evaluation and Failure Analysis for Multilayer Ceramic Chip Capacitors,” IEEE Transactions On Component, Hybrids, and Manufacturing Technology, Vol. CHMT-1, No. 3, 316-324, Sep., 1978.

21.Ruzhong Zuo, Longtu Li, Zhilun Gui, “Influence of Silver Migration on Dielectric Properties and Reliability of Relaxor Based MLCCs,” Ceramics International, 26, 673-676, 2000.

22.J. Yamamatsu, N. Kawano, T. Arashi, A. Sato, Y. Nakano, T. Nomura, “Reliability of Multilayer Ceramic Capacitors with Nickel Electrodes,” Journal of Power Sources, 60, 199-203, 1996.

23.Boussinesq J., “Applications des Potentiels a l,etude de equilibre et du movement de solides elastiques”, Gauthier-Villars, Paris (1855).

24.Johnson K. L., Contact Mechanics, Cambridge University Press, Cambridge (1985).

25.Sneddon I.N., “The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary ProfileInt,” J. Engng. Sci. Vol. 3, pp.47 (1965).

26.Harding J.W. and Sneddon I.N., Proc. Cambridge Philos. Soc. Vol. 41, pp.12 (1945).

27.Pharr G. M., Oliver W.C., and Brotzen F.R., “On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation, ”Journal of Materials Res. Vol. 7, pp.613-617 (1992).

28.Ternovskii A.P., Alekhin V.P., Shorshorov M. Kh., Khrushchov M.M., and Skvortsov V.N., Zavod. Lab. Vol. 39, pp.1242 (1978).

29.Bulychev S. I., Alekhin V. P., Shorshorow M. Kh., Ternovskii A. P., and Shnyrev G. D., Zavod. Lab., Vol. 41, pp.1137 (1975).

30.Bulychev S. I., Alekhin V. P., Shorshorov M.Kh., and Ternovskii A.P., Prob. Prochn. Vol. 9, pp.79 (1976).

31.Shorshorov M. Kh., Bulychev S.I., and Alekhin V.P., Sov. Phys. Dokl. Vol. 26, pp.769 (1982).

32.Bulychev S.I. and Alekhin V.P., Zavod. Lab. Vol. 53, pp. 76 (1987).

33.Kenneth H. Huebner, Earl A. Thornton and Ted G Byrom, “he Finite Element Method for Engineers 3rd Ed,” Eurasia Book Corp., 1982.

34.康淵、陳信吉,ANSYS入門(修訂三版),全華科技,2006。

35.李輝煌,ANSYS工程分析,高立圖書,31~37頁、428~442頁,2005。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top