|
[1]D. C. D. Roux and J. J. Cooper-White, "Dynamics of water spreading on a glass surface,," J. Colloid Intrface Sci.,, vol. 277, p. 424, 2004. [2]F. Heslot, A. M. Cazabat, and N. Fraysse, "Diffusion-controlled wetting films," J. Phys.: Condens Matter, vol. 1, p. 5793, 1989. [3]F. B. Wyart and P. G. Gennes, "Dynamics of partial wetting," Adv. Colloid Interface Sci., vol. 39, p. 1, 1992. [4]P. G. d. Gennes, "Wetting: Static and dynamics," Rev. Mod. Phys., vol. 57, p. 827, 1985. [5]O. D. Velev, B. G. Prevo, and K. H. Bhatt, "On-chip Manipulation of Free Droplets," Nature, vol. 426, p. 515, 2003. [6]V. Srinivasan, V. K. Pamula, and R. B. Fair, "An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids," Lab Chip, vol. 4, p. 310, 2004. [7]T. Taniguchi, T. Torii, and T. Higuchi, "Chemical reactions in microdroplets by electrostatic manipulation of droplets in liquid media," Lab Chip, vol. 2, p. 19, 2002. [8]R. Ramesh, T. Saeki, N. S. Templeton, L. Ji, L. C. Stephens, I. Ito, D. R. Wilson, Z. Wu, C. D. Branch, J. D. Minna, and J. A. Roth, "Successful Treatment of Primary and Disseminated Human Lung Cancers by Systemic Delivery of Tumor Suppressor Genes Using an Improved Liposome Vector," Molecular Therapy, vol. 3, p. 337, 2001. [9]T. A. Tirone, S. P. Fagan, N. S. Templeton, X. Wang, and F. C. Brunicardi, "Insulinoma-Induced Hypoglycemic Death in Mice is Prevented With Beta Cell-Specific Gene Therapy," Annals of surgery vol. 233, p. 603, 2001. [10]G. Kong, R. Braun, and M. Dewhirst, "Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size," Cancer Res, vol. 60, p. 4440, 2000. [11]M. Abdelgawad and A. R. Wheeler, "Low-cost, rapid-prototyping of digital microfluidics devices," Microfluid Nanofluid, vol. 4, p. 349, 2008. [12]Y. Wang, Z. Y, and S. K. Cho, "Efficient in-droplet separation of magnetic particles for digital microfluidics," J. Micromech. Microeng., vol. 17, p. 2148, 2007. [13]H. Yang, Barbulovic-Nad, P. S. Park, and A. R. Wheeler, "Digital microfluidics for cell-based assays," Lab Chip, vol. 8, p. 519, 2008. [14]J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C. J. Kim, "Electrowetting and electrowetting-on-dielectric for microscale liquid handling," Sens. Actuators, Phys. A, vol. 95, p. 259, 2002. [15]M. G. Pollack, R. B. Fair, and A. D. Shenderov, "Electrowetting-based actuation of liquid droplets for microfluidic applications," Appl. Phys. Lett., vol. 77, p. 1725, 2000. [16]A. W. Adamson, "Physical Chemistry of Surfaces," (2nd ed., New York, London and Sydney: John Wiley & Sons Inc. ), 1967. [17]T. Young, "An Essay on the Cohesion of Fluids," Phil. Trans. Roy. Soc. , vol. 95, p. 65, 1805. [18]J. Y. Wang, S. Betelu, and B. M. Law, "Line tension approaching a first-order wetting transition: experimental results from contact angle measurements," Physical Review E vol. 63, p. 031601, 2001. [19]K. Bierbaum, M. Grunze, A. A. Baski, L. F. Chi, W. Schrepp, A. B. D. Cassie, and S. Baxter, "Wettability of Porous Surfaces," Trans. Faraday Soc. , vol. 40, p. 546, 1944. [20]R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Eng. Chem., vol. 28, p. 988, 1936. [21]P. Letellier, A. Mayaffre, and M. Turmine, "Drop size effect on contact angle explained by nonextensive thermodynamics. Young''s equation revisited," Journal of Colloid and Interface Science, vol. 314, p. 604, 2007. [22]A. M. Dokter, S. Woutersen, and H. J. Bakker, "Anomalous Slowing Down of the Vibrational Relaxation of Liquid Water upon Nanoscale Confinement," Phys. Rev. Lett., , vol. 94, p. 178301 2005. [23]B. E. Wyslouzil, J. L. Cheung, G. Wilemski, and R. Strey, "Small Angle Neutron Scattering from Nanodroplet Aerosols," Phys. Rev. Lett., vol. 79, p. 431 1997. [24]B. E. Wyslouzil, G. Wilemski, R. Stret, C. H. Heath, and U. Dieregsweiler, "Experimental evidence for internal structure in aqueous–organic nanodroplets," Phys. Chem. Chem. Phys., vol. 8, p. 54 2006. [25]B. E. Wyslouzil, G. Wilemski, J. L. Cheung, R. Strey, and J. Barker, "Doppler shift anisotropy in small angle neutron scattering," Phys. Rev. E, vol. 60, p. 4330 1999. [26]J. Hautman and M. L. Klein, "Microscopic Wetting Phenomena," Physical Review Letters, vol. 67, p. 1763, 1991. [27]C. F. Fan and T. Caĝin, "Wetting of crystalline polymer surfaces: A molecular dynamics simulation," J. Chem. Phys, vol. 103, p. 9053, 1995. [28]M. Schneemilch and N. Quirke, "Effect of oxidation on wettability of poly(dimethylsiloxane) surfaces," J. Chem. Phys, vol. 127, p. 114701, 2007. [29]J. T. Hirvi and T. A. Pakkanen, "Molecular dynamics simulations of water droplets on polymer surfaces," J. Chem. Phys, vol. 125, p. 144712, 2006. [30]J. T. Hirvi and T. A. Pakkanen, "Wetting of Nanogrooved polymer surfaces," Langmuir, vol. 23, p. 7724, 2007. [31]J. T. Hirvi and T. A. Pakkanen, "Enhanced hydrophobicity of rough polymer surfaces," J. Phys. Chem. B, vol. 111, p. 3336, 2007. [32]T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, and P. Koumoutsakos, "On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes," J. Phys. Chem. B, vol. 107, p. 1345, 2003. [33]M. Lundgren, N. L. Allan, and T. Cosgrove, "Wetting of Water and Water/Ethanol Droplets on a Non-Polar Surface: A Molecular Dynamics Study," Langmuir, vol. 18, p. 10462, 2002. [34]C. C. Hwang, Y. R. Jeng, Y. L. Hsu, and J. G. Chang, "Molecular Dynamics Simulation of Microscopic Droplet Spread on Rough Surfaces," Journal of the Physical Society of Japan, vol. 70, p. 2626, 2001. [35]T. Kimura and S. Maruyama, "A molecular dynamics simulation of water droplet in contact with a platinum surface," The 6th ASME-JSME Thermal Engineering Joint Conference, March16-20, pp. TED-AJ03-183, 2003. [36]B. Shi, S. Sinha, and V. K. Dhir, "Molecular simulation of the contact angle of water droplet on a platinum surface," ASME International Mechanical Engineering Congress and Exposition, Novement 5-11, 2005. [37]S. M. S. Matsumoto, H. Saruwatari, , "A molecular dynamics simulation of a liquid droplet on a solid surface," ASME/JSME Thermal Engineering conference, vol. 2, p. 557 1995. [38]M. H. Adão, M. D. Ruijter, M. Voué, and J. D. Coninck, "Droplet spreading on heterogeneous substrates using molecular dynamics," Phys. Rev. E, vol. 59, p. 746 1999. [39]X. Li, Y. Hu, and H. Wang, "Modeling of lubricant spreading on a solid substrate," J. Appl. Phys., vol. 99, p. 024905 2006. [40]G. S. Grest, D. R. Heine, and E. B. Webb, "Liquid nanodroplets spreading on chemically patterned surfaces," Langmuir, vol. 22, p. 4745 2006. [41]M. Patra and P. Linse, "Simulation of Grafted Polymers on Nanopatterned Surfaces," Nano Lett., vol. 6, p. 133 2005. [42]P. Doruker and W. L. Mattice, "Effect of surface roughness on structure and dynamics in thin films," Macromol. Theory Simul. , vol. 10, p. 363, 2001. [43]T. Hapke, A. Linke, G. Patzold, and D. W. Heermann, "Modeling of amorphous polymer surfaces in computer simulation " Surface Science, vol. 373, p. 109, 1997. [44]G. Xu and W. L. Mattice, "Monte Carlo simulation on the glass transition of free-standing atactic polypropylene thin films on a high coordination lattice," J. Chem. Phys, vol. 118, p. 5241, 2003. [45]P. Doruker, "Simulation of Polyethylene Thin Films Composed of Various Chain Lengths," Polymer vol. 43, p. 425, 2002. [46]P. Doruker, "Segregation of Chain Ends is a Weak Contributor to Increased Mobility at Free Polymer Surfaces," J. Phys. Chem. B, vol. 103, p. 178, 1999. [47]J. A. Forrest, K. Dalnoki-Veress, J. R. Stevens, and J. R. Dutcher, "Effect of Free Surfaces on the Glass Transition Temperature of Thin Polymer Films," Phys. Rev. Lett., vol. 77, p. 2002, 1996. [48]T. K. Xia, J. Ouyang, M. W. Ribarsky, and U. Landman, "Interfacial alkane films," Phys. Rev. Lett., vol. 69, p. 1967 1992. [49]K. C. Daoulas, V. A. Harmandaris, and V. G. Mavrantzas, "Detailed Atomistic Simulation of a Polymer Melt/Solid Interface: Structure, Density, and Conformation of a Thin Film of Polyethylene Melt Adsorbed on Graphite," Macromolecules vol. 38, p. 5780, 2005. [50]I. Benjamin, "Hydrogen Bond Dynamics at Water/Organic Liquid Interfaces," J. phys. Chem. B, vol. 109, p. 13711, 2005. [51]J. L. Rivera, C. McCabe, and P. T. Cummings, "Molecular simulations of liquid-liquid interfacial properties: Water–n-alkane and water-methanol–n-alkane systems," Phys. Rev. E, vol. 67, p. 011603, 2003. [52]Y. Zhang, S. E. Feller, B. R. Brooks, and R. W. Pastor, "Computer simulation of liquid/liquid interfaces. I. Theory and application to octane/water," J. Chem. Phys, vol. 103, p. 10252, 1995. [53]S. S. Jang, S. T. Lin, P. K. Maiti, M. Blanco, and W. A. G. III, "Molecular Dynamics Study of a Surfactant-Mediated Decane−Water Interface: Effect of Molecular Architecture of Alkyl Benzene Sulfonate," J. Phys. Chem. B, vol. 108, p. 12130, 2004. [54]H. Kikuchi, S. Kuwajima, and M. Fukuda, "Novel method to estimate solubility of small molecules in cis-polyisoprene by molecular dynamics simulations," J. Chem. Phys, vol. 115, p. 6258, 2001. [55]S. Paul and A. Chandra, "Hydrogen bond dynamics at vapour–water and metal–water interfaces," Chemical Physics Letters, vol. 386, p. 218, 2004. [56]J. L. Keddie, R. A. L. Jones, and R. A. Cory, "Interface and surface effects on the glass-transition temperature in thin polymer films " Faraday Discuss. Chem. Soc., vol. 98, p. 219, 1994. [57]S. Zankovych, T. Hoffmann, J. Seekamp, J. U. Bruch, and C. M. S. Torres, "Nanoimprint lithography: Challenges and prospects " Nanotechnology vol. 12, p. 91 2001. [58]K. Fukao and Y. Miyamoto, "Glass transitions and dynamics in thin polymer films: Dielectric relaxation of thin films of polystyrene," Phys. Rev. E vol. 61, p. 1743, 2000. [59]J. L. Keddie, R. A. L. Jones, and R. A. Cory, "Size-Dependent Depression of the Glass Transition Temperature in Polymer Films," Europhys. Lett. , vol. 27 pp. 59-64 1994 [60]G. B. DeMaggio, W. E. Frieze, and D. W. Gidley, "Interface and Surface Effects on the Glass Transition in Thin Polystyrene Films," Phys. Rev. Lett., vol. 78, pp. 1524 - 1527 1997. [61]W. E. Wallace, J. H. v. Zanten, and W. L. Wu, "Influence of an impenetrable interface on a polymer glass-transition temperature," Phys. Rev. E, vol. 52, p. R3329, 1995. [62]K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, and H. Miyaji, "Dynamics of alpha and beta processes in thin polymer films: poly(vinyl acetate) and poly(methyl methacrylate)," Phys. Rev. E vol. 64, p. 051807 2001. [63]H. J. Yan, J. Lu, L. J. Wan, and C. L. Bai, "STM Study of Two-Dimensional Assemblies of Tricarboxylic Acid Derivatives on Au(111)," J. Phys. Chem. B, vol. 108 pp. 11251–11255, 2004. [64]S. Stepanow, M. Lingenfelder, A. Dmitriev, H. Spillmann, E. Delvigne, N. Lin, X. Deng, C. Cai, J. V. Barth, and K. Kern, "Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems," Nature Materials vol. 3, pp. 229 - 233, 2004. [65]R. Otero, F. Hümmelink, F. Sato, S. B. Legoas, P. Thostrup, E. Lægsgaard, I. Stensgaard, D. S. Galvão, and F. Besenbacher, "Lock-and-key effect in the surface diffusion of large organic molecules probed by STM," Nat. Mater. , vol. 3, p. 779, 2004. [66]S. Stepanow, N. Lin, F. Vidal, A. Landa, M. Ruben, J. V. Barth, and K. Kern, "Programming Supramolecular Assembly and Chirality in Two-Dimensional Dicarboxylate Networks on a Cu(100) Surface," Nano Letter, vol. 5, p. 901, 2005. [67]S. Clair, S. Pons, A. P. Seitsonen, H. Brune, K. Kern, and J. V. Barth, "STM Study of Terephthalic Acid Self-Assembly on Au(111): Hydrogen-Bonded Sheets on an Inhomogeneous Substrate," J. Phys. Chem. B vol. 108, p. 14585, 2004. [68]T. Yokoyama, S. Yokoyama, T. Kamikado, Y. Okuno, and S. Mashiko, "Selective assembly on a surface of supramolecular aggregates with controlled size and shape," Nature, vol. 413, p. 619, 2001. [69]G. Schull, L. Douillard, C. Fiorini-Debuisschert, and F. Charra, "Single-Molecule Dynamics in a Self-Assembled 2D Molecular Sieve," Nano Lett. , vol. 6, p. 1360, 2006. [70]G. J. Su, H. M. Zhang, L. J. Wan, C. L. Bai, and T. Wandlowski, "Potential-Induced Phase Transition of Trimesic Acid Adlayer on Au(111)," J. Phys. Chem. B, vol. 108, p. 1931, 2004. [71]J. Lu, Q. d. Zeng, C. Wang, Q. y. Zheng, L. Wan, and C. Bai, "Self-assembled two-dimensional hexagonal networks " J. Mater. Chem. , vol. 12, p. 2856, 2002. [72]R. Braun, M. Sarikaya, and K. Schulten, "Genetically engineered gold-binding polypeptides: structure prediction and molecular dynamics " Polym. Ed., vol. 13, p. 747, 2002. [73]C. L. Pint, M. W. Roth, and C. Wexler, "Behavior of hexane on graphite at near-monolayer densities: Molecular dynamics study," Physical Review B vol. 73, p. 085422, 2006. [74]M. W. Roth, C. L. Pint, and C. Wexler, "Phase transitions in hexane monolayers physisorbed onto graphite," Physical Review B vol. 71, p. 155427 2005. [75]N. Winter, J. Vieceli, and I. Benjamin, "Hydrogen-bond structure and dynamics at the interface between water and carboxylic acid-functionalized self-assembled monolayers," J. Phys. Chem. B, vol. 112, pp. 227-231, 2008. [76]P. Liu, E. Harder, and B. J. Berne, "Hydrogen-Bond Dynamics in the Air/Water Interface," J. Phys. Chem. B, vol. 109, p. 2949 2005. [77]S. T. Lin, P. K. Maiti, and W. A. Goddard, "Dynamics and thermaodynamics of water in PAMAM dendrimers at subnanosecond time scales," J. Phys. Chem. B, vol. 109, pp. 8663-8672, 2005. [78]D. Frenkel and B. Smit, "Understanding Molecular Simulation from Algorithms to Applications," (Academic, New York, 2002). [79]A. R. Leach, "Molecular Modeling, Principles and Applications," (2/E., Addison Wesley Longman Limited 2001). [80]楊小鎮, 分子模擬與高分子材料(北京: 科學出版社 2002). [81]M. Levitt, M. Hirshberg, R. Sharon, and V. Daggett, "Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution," Com. Phys. Com vol. 91, p. 215, 1995. [82]A. Hagler, P. Stern, R. Sharon, J. Becker, and F. Naider, "Computer Simulation of Conformational Properties of Oligopeptides. Comparison of Theoretical Methods and Analysis of Experimental Results," J. Am. Chem. Soc., vol. 101, p. 6842, 1979. [83]S. Weiner, P. Kollman, D. Case, U. Singh, C. Ghio, G.Alagona, S. Profeta, and P. Weiner, "A new force field for molecular mechanical simulation of nucleic acids and proteins," J. Am. Chem. Soc., vol. 106, p. 765, 1984. [84]B. Brooks, R. Bruccoleri, B.Olafson, D. States, S.Swaminathan, and M. Karplus, "CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations," J. Comp. Chem., vol. 4, p. 187, 1983. [85]W. F. v. Gunsteren and H. J. C. Berendsen, "Groningen Molecular Simulation (GROMOS) Library Manual," Biomos, 1987. [86]S. L. Mayo, B. D. Olafson, and W. A. Goddard, "Dreiding:A Generic Force Field for Molecular Simulations," Journal of Phys. Chem., vol. 94, p. 8897, 1990. [87]S. Lifson and A. Warshel, "Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n-Alkane Molecules," J. Chem. Phys., vol. 49, p. 5116, 1968. [88]A. Warshel and S. Lifson, "Consistent Force Field Calculations. II. Crystal Structures, Sublimation Energies, Molecular and Lattice Vibrations, Molecular Conformations, and Enthalpies of Alkanes," J. Chem. Phys., vol. 53, p. 582, 1970. [89]M. Levitt and S. Lifson, "Refinement of protein conformations using a macromolecular energy minimization procedure," J. Mol. Biol., vol. 46, p. 269, 1969. [90]C. L. I. Brooks, B. M. Pettitt, and M. Karplus, "Structural and Energetic effects of Truncating Long Ranged Interactions in Ionic and Polar Fluids," J. Chem. Phys. , vol. 83 p. 5897, 1985. [91]P. J. Steinbach and B. R. Brooks, "New Spherical-Cutoff Methods for Long-Range Forces in Macromolecular Simulation. ," J. Comp. Chem. , vol. 15 p. 667, 1994. [92]M. Prevost, G. Lippens, and S. Wodak, "Computer Simulations of Liquid Water: Treatment of Long-range Interactions," Mol. Phys. , vol. 71 p. 587, 1990. [93]C. L. I. Brooks, B. M. Pettitt, and M. Karplus, "Structural and Energetic Effects of Truncating Long Ranged Interactions in Ionic and Polar Fluids. ," J. Chem. Phys., vol. 83 p. 5897, 1985. [94]M. Levitt, M. Hirshberg, R. Sharon, and V. Daggett, "Molecular Dynamics of Macromolecules in Water.," Chemica Scripta A, vol. 29 p. 197, 1989. [95]R.J. Loncharich and B.R. Brooks, "The Effects of Truncating Long-Range Forces on Protein Dynamics.," Proteins-Struc. Func. Genet vol. 6 p. 32, 1989. [96]P.E. Smith and M.B. Pettitt, "Peptides in Ionic Solutions: A Comparison of the Ewald and Switching Function techniques. ," J. Chem. Phys. , vol. 95, p. 8430, 1991. [97]M. Levitt, M. Hirshberg, R. Sharon, K. E. Laiding, and V. Daggett, "Calibration and Testing of a Water Model for Simulation of the Molecular Dynamics of Proteins and Nucleic Acids in Solution," J. Phys. Chem. B, vol. 101, p. 5051 1997. [98]http://depts.washington.edu/daglab/downloads/Daggett_cv.pdf. [99]V. Rosato, M. Guillope, and B. Legrand, "Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model " Philos. Mag. A, vol. 59, p. 321, 1989. [100]F. Cleri and V. Rosato, "Tight-binding potentials for transition metals and alloys," Phys. Rev. B vol. 48, p. 22, 1993. [101]S. S. Jang, Y. H. Jang, Y. H. Kim, W. A. G. III, A. H. Flood, B. W. Laursen, H. R. Tseng, J. F. Stoddart, J. O. Jeppesen, J. W. Choi, D. W. Steuerman, E. DeIonno, and J. R. Heath, "Structures and Properties of Self-Assembled Monolayers of Bistable [2] Rotaxanes on Au (111) Surfaces from Molecular Dynamics Simulations Validated with Experiment," J. Am. Chem. Soc., vol. 127, p. 1563, 2005. [102]J. Norberg and L. Nilsson, "Advances in biomolecular simulations: methodology and recent applications," Quarterly Reviews of Biophysics, vol. 36, pp. 257-306, 2003. [103]D. A. C. Beck, R. S. Armen, and V. Daggett, "Cutoff size need not strongly influence moleuclar dynamics results for solvated polypeptides," Biochemistry, vol. 44, pp. 609-616, 2005. [104]J. Norberg and L. Nilsson, "On the truncation of long range electrostatic interactionsin DNA," Biophysical Journal, vol. 79, pp. 1537-1553, 2000. [105]J. M. Haile, "Molecular Dynamics Simulation : elementary methods," (John Wiley & Sons, New York, 1992). [106]M. P. Allen and D. J. Tildesley, "Computer Simulation of Liquids," (Clarendon Press, Oxford, 1987). [107]G. Binnig, M. Despont, U. Drechsler, W. Häberle, M. Lutwyche, P. Vettiger, H. J. Mamin, B. W. Chui, and T. W. Kenny, "Ultrahigh-density atomic force microscopy data storage with erase capability," Appl. Phys. Lett. , vol. 74, p. 1329 1999. [108]P. Vettiger, M. Despont, U. Drechsler, U. Dürig, W. Häberle, M. I. Lutwyche, H. E. Rothuizen, R. Stutz, R. Widmer, and G. K. Binnig, "The ``Millipede''--more than one thousand tips for future AFM data storage," IBM J. Res. Develop, vol. 44, p. 323, 2000. [109]L. J. Kricka, P. Fortina, P. N. J. Panaro, P. Wilding, G. Alonso-Amigo, and H. Becker, "Fabrication of plastic microchips by hot embossing," lab Chip, vol. 2, p. 1, 2002. [110]T. J. Johnson, D. Ross, M. Gaitan, and L. E. Locascio, "Laser Modification of Preformed Polymer Microchannels: Application To Reduce Band Broadening around Turns Subject to Electrokinetic Flow," Anal. Chem. , vol. 73, p. 3656, 2001. [111]S. Qi, X. Liu, S. Ford, J. Barrows, G. Thomas, K. Kelly, A. McCandless, K. Lian, J. Goettert, and S. A. Soper, "Microfluidic devices fabricated in poly( methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection," Lab Chip, vol. 2, p. 88, 2002. [112]F. Fixe, M. Dufva, P. Telleman, and C. B. V. Christensen, "One-step immobilization of aminated and thiolated DNA onto poly(methylmethacrylate) (PMMA) substrates," Lab Chip, vol. 4, p. 191, 2004. [113]K. Tanaka, Y. Fujii, H. Atarashi, K. i. Akabori, M. Hino, and T. Nagamur, "Nonsolvents cause swelling at the interface with poly(methyl methacrylate) films," Langmuir, vol. 24, pp. 296-301, 2008. [114]A. Chandra, "A Kirkwood−Buff Derived Force Field for Mixtures of Urea and Water," J. Phys. Chem. B vol. 107, p. 3899 2003. [115]G. Sutmann and R. Vallauri, "Dynamics of the hydrogen bond network in liquid water " Journal of Molecular Liquids, vol. 98–99, p. 215 2002. [116]H. Xu, H. A. Stern, and B. J. Berne, "Can Water Polarizability Be Ignored in Hydrogen Bond Kinetics?," J. Phys. Chem. B vol. 106, p. 2054 2002. [117]S. P. Ju, M. L. Liao, C. H. Chen, W. J. Lee, and J. G. Chang, Computational Materials Science, vol. 45, p. 867, 2009. [118]K. Tanaka, Y. Fujii, H. Atarashi, K.-i. Akabori, M. Hino, and T. Nagamur, "Nonsolvents cause swelling at the interface with poly(methyl methacrylate) films," Langmuir, vol. 24, pp. 296-301, 2008. [119]M. J. d. Ruijter, T. D. Blake, and J. D. Coninck, "Dynamic wetting studied by molecular modeling simulations of droplet spreading," Langmuir, vol. 15, p. 7836, 1999. [120]S. A. Soper, A. C. Henry, B. Vaidya, M. Galloway, M. Wabuyele, and R. L. McCarley, "surface modification of polymer-based microfluidic devices " Analytica Chimica Acta, vol. 470, p. 87, 2002. [121]J. Chai, F. Lu, B. Li, and D. Y. Kwok, "Wettability interpretation of oxygen plasma modified poly(methyl methacrylate)," Langmuir, vol. 20, p. 10919, 2004. [122]L. Brown, T. Koerner, J. H. Horton, and R. D. Oleschulk, "Fabrication and Characterization of Poly(methylmethacrylate) Microfluidic Devices Bonded Using Surface Modification and Solvents," Lab Chip, vol. 6, p. 66, 2006. [123]N. Choudhury and B. M. Pettitt, "Dynamics of water Trapped between Hydrophobic Solutes," J. Phys. Chem. B, vol. 109, pp. 6422-6429, 2005. [124]M. Marchi, F. Sterpone, and M. Ceccarlli, "Water Rotational Relaxation and Diffusion in Hydrated Lysozyme," J. Am. Chem. Soc., vol. 124, p. 6787, 2002. [125]J. Martí, J. A. Padro, and E. Guardia, "Molecular dynamics simulation of liquid water along the coexistence curve: hydrogen bonds and vibrational spectra," J. Chem. Phys., vol. 105, p. 639, 1996. [126]A. Luzar, "Resolving the hydrogen bond dynamics conundrum," J. Chem. Phys., vol. 113, p. 10663, 2000. [127]S. Wang, H. Xing, Y. Li, J. Bai, Y. Pan, M. Scheer, and X. You, "2D and 3D Cadmium(II) Coordination Polymers from a Flexible Tripodal Ligand of 1,3,5-Tris(carboxymethoxy)benzene and Bidentate Pyridyl-Containing Ligands with Three-, Eight- and Ten-Connected Topologies," European Journal of Inorganic Chemistry, vol. 2006, p. 3041, 2006. [128]W.-J. Lee, M.-H. Weng, S.-P. Ju, and H.-C. Chen, "Lock and key behaviors of an aromatic carboxylic acid molecule with differing conformations on an Au (111) surface," Molecular Physics, vol. 106, pp. 2371-2380, 2008. [129]A. Bondi, "van der Waals Volumes and Radii," J. Phys. Chem. , vol. 68, p. 441, 1964. [130]P. K. Mandal and E. Arunan, "Hydrogen bond radii for the hydrogen halides and van der Waals radius of hydrogen," E. J. Chem. Phys., vol. 114, p. 3880, 2001. [131]S. S. Batsanov, "Van der Waals Radii of Hydrogen in Gas-Phase and Condensed Molecules " Struct. Chem. , vol. 6, p. 395, 1999.
|