|
1.A. Akatay and H. Urey, “Design and optimization of microlens array based high resolution beam steering system,” Optics Express, 15(8) (2007) 4523-4529. 2.K. Hedsten, J. Melin, J‥. Bengtsson, P. Modhc, D. Karl′en, B. L‥ofving, R. Nilsson, H. R‥odjeg°ard, K. Persson, P. Enoksson, F. Nikolajeff and G. Andersson, “MEMS-based VCSEL beam steering using replicated polymer diffractive lens,” Sensors and Actuators A 142 (2008) 336–345. 3.A. Tuantranont, V.M. Bright, J. Zhang, W. Zhang, J.A. Neff, Y.C. Lee, “Optical beam steering using MEMS-controllable microlens array,” Sensors and Actuators A 91 (2001) 363-372. 4.L. C. Ling, Y. I. Yen, F. C. Ho, “An efficient illumination system for single-pane LCD projector,” SID 01 DIGEST, (2001) 1184-1187. 5.C. Ke, X. Yi, Z. Xu, J. Lai, “Monolithic integration technology between microlens arrays and infrared charge coupled devices,” Optics & Laser Technology 37 (2005) 239-243. 6.F. Li, X. Li, J. Zhang, and B. Yang, “Enhanced light extraction from organic light-emitting devices by using microcontact printed silica colloidal crystals,” Organic Electronics 8 (2007) 635–639. 7.S. Mo‥ller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” Journal of Applied Physics Vol. 91, No. 5 (2002) 3324-3327. 8.J. Duparre′ , D. Radtke, and P. Dannberg, “Implementation of field lens arrays in beam-deflecting microlens array telescopes,” Applied Optics, 43(25) (2004) 4854-4861. 9.Y. Choi, J.H. Park, J.H. Kim, S.D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Optical Materials 21 (2002) 643-646. 10.H. Ren, Y.H. Lin, S.T. Wu, “Flat polymeric microlens array,” Optics Communications 261 (2006) 296-299. 11.H. Ren, Y.H. Fan, S. Gauza, S.T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Optics Communications 230 (2004) 267-271. 12.J. Chen, W. Wang, J. Fang and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” Journal of Micromechanics and Microengineering 14 (2004) 675-680. 13.W. Wang and J. Fang, “Design, fabrication and testing of a micromachined integrated tunable microlens,” Journal of Micromechanics and Microengineering 16 (2006) 1221-1226. 14.Y.J. Chang, K. Mohseni, and V.M. Bright, “Fabrication of tapered SU-8 structure and effect of sidewall angle for a variable focus microlens using EWOD,” Sensors and Actuators A 136 (2007) 546-553. 15.K.S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg and S. Yang, “Tunable microfluidic optical devices with an integrated microlens array,” Journal of Micromechanics and Microengineering 16 (2006) 1660-1666. 16.C.C. Yang, Y.H. Huang, T.C. Peng, M.C. Wu, C.L. Ho, C.C. Hong, I. M. Liu and Y.T. Tsai, “Fabrication of a vertical reflow microlens with silylation technology,” Sensors and Actuators A 136 (2007) 398-402. 17.P. Ruther, B. Gerlach, J. G‥ottert, M. Ilie, J. Mohr, A. M‥uller and C. Oßmann, “ Fabrication and characterization of microlenses realized by a modified LIGA process,” Pure and Applied Optics 6 (1997) 643-653. 18.K.W. Jo, M.S. Kim, J.H. Lee, E.K. Kim and K.H. Park, “Optical characteristics of a self-aligned microlens fabricated on the sidewall of a 45° angled optical fiber,” IEEE Phptpnics Technology Letters, 16(1) (2004) 138-140. 19.C.V. Berkel, B.P McGarvey and J.A. Clarke, “Microlens arrays for 2D large area images sensors,” Pure and Applied Optics 3 (1994) 177-182. 20.M. Ares, S. Royo, and J. Caum, “Shack-Hartmann sensor based on a cylindrical microlens array,” Optics Letters, 15(7) (2007) 769-771. 21.M.H. Wu and G.M. Whitesides, “Fabrication of two-dimensional arrays of microlenses and their application in photolithography,” Journal of Micromechanics and Microengineering 12 (2002) 747-758. 22.M.H. Wu, K.E. Paul, and G.M. Whitesides, “Patterning flood illumination with microlens arrays,” Applied Optics, 41(13) (2002) 2575-2585. 23.C.S. Lim, M.H. Hong, Y. Lin, G.X. Chen, A.S. Kumar, M. Rahman, L.S. Tan, J.Y.H. Fuh, and G.C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” Journal of Materials Processing Technology 192-193 (2007) 328-333. 24.S.K. Rotich, J.G. Smith, A.G.R. Evans and A. Brunnschweiler, “Micromachinged thin solar cells with a novel light trapping scheme,” Journal of Micromechanics and Microengineering 8 (1998) 134-137. 25.C. Hembd-S‥olner, R.F. Stevens and M.C. Hutley, “Imaging properties of the Gabor superlens,” Pure and Applied Optics 1 (1999) 94-102. 26.J. Seo and L.P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sensors and Actuators B 99 (2004) 615-622. 27.T. Hirai and S. Hayashi, “Lens functions of polymer microparticle arrays,” Colloids and Surfaces A: Physiochemical and Engineering Aspects 153 (1999) 503-513. 28.S.K. Lee1, K.C. Lee and S.S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” Journal of Micromechanics and Microengineering 12 (2002) 334-340. 29.C.H. Chien, C.T. Pan, C.C. Hsieh, C.M. Yang, K.L. Sher, “A study of the geometry of microball lens arrays using the novel batch-fabrication technique,” Sensors and Actuators A 122 (2005) 55-63. 30.C.R. King, L.Y. Lin and M.C. Wu, “Out-of plane refractive microlens fabricated by surface micromaching,” IEEE Photonics Technology Letters, Vol. 8, No. 10 (1996) 1349-1351. 31.Y.S. Lin, C.T0 Pan, K.L. Lin, S.C. Chen, J.J. Yang, and J.P. Yang, “Polyimide as the pedestal of batch fabricated micro-ball lens and micro-mushroom array,” Micro Electro Mechanical Systems, 2001. MEMS 2001. The 14th IEEE International Conference, (2001), 337-340. 32.Zoran D. Popovic, Robert A. Sprague, and G. A. Neville Connell, “Technique for monolithic fabrication of microlens arrays,” Applied Optics 27(7) (1988) 1281-1297. 33.C.P Lin, H. Yang and C.K. Chao, “A new microlens array fabrication method using UV proximity printing,” Journal of Micromechanics and Microengineering 13 (2003) 748-757. 34.R. Yang and W. Wang, “Out-of-plane polymer refractive microlens fabricated based on direct lithography of SU-8,” Sensors and Actuators A 113 (2004) 71-77. 35.S. Sugiyama, S. Khumpuang and G. Kawaguchi, “Plain-pattern to cross-section transfer (PCT) technique for deep x-ray lithography and applications,” Journal of Micromechanics and Microengineering 14 (2004) 1399-1404. 36.M.C. Hutley, “Optical techniques for the generation of microlens arrays,” Journal of Modern Optics, 37(2) (1990) 253-265. 37.N.F. Borrelli, D.L. Morse, R.H. Bellman and W.L. Morgan, “Photolytic technique for producing microlenses in photosensitive glass,” Applied Optics 24(16) (1985) 2520-2525. 38.B. Muric′, D. Pantelic′, D. Vasiljevic′, B. Panic′, “Microlens fabrication on tot’hema sensitized gelatin,” Optical Materials 30 (2008) 1217-1220. 39.M. Wakaki, Y. Komachi and G. Kanai, “Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser,” Applied Optics 37(4) (1998) 627-631. 40.F. Beinhorn, J. Ihlemann, K. Luther, J. Troe, “Micro-lens arrays generated by UV laser irradiation of doped PMMA,” Journal of Applied Physics A 68 (1999) 709-713. 41.M. He, X.C. Yuan, N.Q. Ngo, J. Bu and S.H. Tao, “Single-step fabrication of a microlens array in sol-gel material by direct laser writing and its application in optical coupling,” Pure and Applied Optics 6 (2004) 94-97. 42.Y.C. Lee, C.M. Chen and C.Y. Wu, “A new excimer laser micromachining method for axially symmetric 3D microstructures with continuous surface,” Sensors and Actuators A 117 (2005) 349-355. 43.C.S. Lee and C.H. Han, “A novel refractive silicon microlens array using bulk micromachining technology,” Sensors and Actuators A 88 (2001) 87-90. 44.F.W. Ostermayer, Jr., P.A. Kohl, and R.H. Burton, “Photoelectrochemical etching of integral lenses on InGaAsP/InP light-emitting diodes,” Applied Physics Letter, 43(7) (1983) 642-644. 45.C.S. Lim, M.H. Hong, A. Senthil Kumar, M. Rahman and X.D. Liu, “Fabrication of concave microlens array using laser patterning and isotropic etching,” International Journal of Machine Tools & Manufacture 46 (2006) 552-558. 46.C. Tsou and C. Lin, “A new method for microlens fabrication by a heating encapsulated air process,” IEEE Photonics Technology Letters, 18(23) (2006) 2490-2492. 47.D.M. Hartmann, O. Kibar and S.C. Esener, “Optimization and theoretical modeling of polymer microlens array fabricated with the hydrophobic effect,” Applied Optics, 40(16) (2001) 2736-2746. 48.W.K. Huang, C.J. Ko and F.C. Chen, “Organic selective-area patterning method for microlens array fabrication,” Microelectronic Engineering 83 (2006) 1333-1335. 49.S. Moon, N. Lee and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” Journal of Micromechanics and Microengineering 13 (2003) 98-103. 50.R.K. Dutta, J.A. van Kan, A.A. Bettiol, F. Watt, “Polymer microlens replication by nanoimprint lithography using proton beam fabricated Ni stamp,” Nuclear Instruments and Methods in Physics Research B 260 (2007) 464-467. 51.D.S. Ko, “A decompression method for the fabrication of polymer microlens arrays,” Infrared Physics & Technology 45 (2004) 177-180. 52.Y. Fu, “Investigation of microlens mold fabricated by focused ion beam technology,” Microelectronic Engineering 56 (2001) 333–338. 53.W. Choi, J. Lee, W.B. Kim, B.K. Min, S. Kang and S.J. Lee, “Design and fabrication of tungsten carbide mould with micro patterns imprinted by micro lithography,” Journal of Micromechanics and Microengineering 14 (2004) 1519-1525. 54.P. Merz, H.J. Quenzer, H. Bernt, B. Wagner and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” Transducers 1 (2003) 258-261. 55.Yang Chen, Allen Y Yi, Donggang Yao, Fritz Klocke and Guido Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” Journal of Micromechanics and Microengineering 18 (2008) 055022-055029.. 56.Su-dong Moon, Shinill Kang and Jong-Uk Bu, “Fabrication of polymeric microlens of hemispherical shape using micromolding,” Optical Engineering 41(9) (2002) 2267-2270. 57.P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee and H.J. Cho, “Microlens fabrication using an etched glass master,” Microsystem Technology 13 (2007) 339-342. 58.T.K. Shin, J.R. Ho and J.W. John Cheng, “A new approach to polymertic microlens array fabrication using soft replica molding,” IEEE Photonics Technology Letters, 16(9) (2004) 2078-2080. 59.L. Desmet, S.V. Overmeire, J.V. Erps, H. Ottevaere, C. Debaes and H. Thienpont, “Elastomeric inverse molding and vacuum casting process characterization for the fabrication,” Journal of Micromechanics and Microengineering 17 (2007) 81–88. 60.C.Y. Chang, S.Y. Yang and M.H. Chu, “Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process,” Microelectronic Engineering 84 (2007) 355-361. 61.C.Y. Chang, S.Y. Yang, L.S. Huang and J.H. Chang, “Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon,” Infrared Physics & Technology 48 (2006) 163–173. 62.H.J. Nam, D.Y. Jung, G.R. Yi and H. Choi, “Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres,” Langmuir 22 (2006) 7358-7363. 63.V. Bardinal, E. Daran, T. Leïchlé, C.Vergnenègre, C. Levallois, T. Camps, V. Conedera, J. B. Doucet and F. Carcenac, “Fabrication and characterization of microlens arrays using a cantilever-based spotter,” Optics Express 15(11) (2007) 6900-6907. 64.M. Kubo and M. Hanabusa, “Fabrication of microlenses by laser chemical vapor deposition,” Applied Optics 29(18) (1990) 2755-2759. 65.D.L. MacFarlane, V. Narayan, J.A. Taturn, W.R. Cox, T. Chen and D.J. Hayes, “Microjet fabricastion of microlens arrays,” IEEE Photonics Technology Letters, 6(9) (1994) 1112-1114. 66.H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff and H. Thienpont, “Two-dimaensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” Pure and Applied Optics 4 (2002) S22-S28. 67.J.R. Hoa, T.K. Shih, J.W. John Cheng, C.K. Sung and C.F. Chen, “A novel method for fabrication of self-aligned double microlens arrays,” Sensors and Actuators A 135 (2007) 465–471. 68.S. Chen, X. Yi and H. Ma, “A novel method of fabrication of microlens arrays,” Infrared Physics & Technology 44 (2003) 133–135. 69.C.T. Pan, “Design and fabrication of sub-micrometer eight-level bi-focal diffraction optical elements,” Journal of Micromechanics and Microengineering 14 (2004) 471–479. 70.K. Totsu, K. Fujishiro, S. Tanaka and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sensors and Actuators A 130-131 (2006) 387-392. 71.W. Da‥schner, P. Long, R. Stein, C. Wu and S.H. Lee, “General aspheric refractive micro-optics fabricated by optical lithography using a high energy,” The Journal of Vacuum Science and Technology B 14(6), (1996) 3730-3733. 72.H. Suzuki, T. Moriwaki, Y. Yamamoto and Y. Goto, “Precision cutting of aspherical ceramic molds with micro PCD milling tool,” Annals of the CIRP 56 (2007) 131-134. 73.Y.C. Lee and C.Y. Wu, “Excimer laser micromachining of aspheric microlenses with precise surface profile control and optimal focusing capability,” Optics and Lasers in Engineering 45 (2007) 116-125. 74.M. Oikawa and K. Iga, “Distributed-index planar microlens,” Applied Optics 21(6) (1982) 1052-1056. 75.N. Yamamoto, H. Nishi, K. Nishizawa and I. Kitano, “Selfoc microlens with a spherical surface,” Applied Optics 21(6) (1982) 1021-1023. 76.S. Chen, X. Yi, L. Kong, M. He and H. Wang, “Monolithic integration technique for microlens arrays with infrared focal plane arrays,” Infrared Physics & Technology 43 (2002) 109-112. 77.J.K. Ji and Y.S. Kwon, “Conical microlens arrays that flatten optical-irradiance profiles of nonuniform sources,” Applied Optics 34(16) (1995) 2841-2843. 78.T.K. Shih, C.F. Chen, J.R. Ho, F.T. Chuang, “Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectronic Engineering 83 (2006) 2499–2503. 79.S.I. Chang and J.B. Yoon, “Microlens array diffuser for a light-emitting diode backlight system,” Optics Letters 31(20) (2006) 3016-3018. 80.N.F. Borrelli, “Efficiency of microlens array for projection LCD,” IEEE 44th Electronic Components and Technology Conference (1994) 338-345. 81.A.Y. Smuk and N.M. Lawandy, “Direct laser fabrication of dense microlens arrays in semiconductor-doped glass,” Journal of Applied Physics, 87(8) (2002) 4026-4030. 82.C.P. Lin, H. Yang and C.K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” Journal of Micromechanics and Microengineering 13 (2003) 775–781. 83.H. Yang, C.K. Chao, M.K. Wei and C.P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” Journal of Micromechanics and Microengineering 14 (2004) 1197–1204. 84.M.C. Chou, C.T. Pan, S.C. Shen, M.F. Chen, K.L. Lin and S.T. Wu, “A Novel Method to Fabricate Gapless Hexagonal Micro-lens Array,” Sensors and Actuators A 118 (2005) 298-306. 85.C.T. Pan and C.H. Su, “Fabrication of gapless triangular micro-lens array,” Sensors and Actuators A 134 (2007) 631-640. 86.C.T. Pan and C.H. Su, “Fabrication of high fill factor optical film using two-layer photoresists,” Journal of Modern Optics 55(1) (2008) 33-42. 87.B. Li and Q. Chen, “Solid micromechanical valves fabricated with in situ UV-LIGA assembled nickel,” Sensors and Actuators A 126 (2006) 187-193. 88.W. Qu, C. Wenzel and G. Gerlach, “Fabrication of a 3D differential-capacitive acceleration sensor by UV-LIGA,” Sensors and Actuators 77 (1999) 14-20. 89.X.M. Jing, D. Chen, D. M. Fang, C. Huang, J.Q. Liu and X. Chen, “Multi-layer microstructure fabrication by combining bulk silicon micromachining and UV-LIGA technology,” Microelectronics Journal 38 (2007) 120–124. 90.Y.H. Zhang, G.F. Ding, S. Fu and B.C. Cai, “A fast switching bistable electromagnetic microactuator fabricated by UV-LIGA technology,” Mechatronics 17 (2007) 165-171. 91.E. Hecht, Optics, San Francisco, Assison Wesley (2002). 92.N.F. Borrelli, Microoptics technology, New York, Marcel Dekker (2005). 93.H. Toshiyoshi, G.D. John Su, J. LaCosse, and M. C. Wu, “A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process,” Journal of Lightwave Technology 21(7) (2003) 1700-1708. 94.Y.H. Lin, Student Member, IEEE, and W. Hsu, “A novel fabrication method of microlens array by surface tension and injection process,” Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand (2007) 443-446. 95.C.K. Chung and Y.Z. Hong, “Fabrication and analysis of the reflowed microlens arrays using JSR THB-130 N photoresist with different heat treatments,” Microsystem Technology 13 (2007) 523-530. 96.H. Yang, C.Y. Yang and M.S. Yeh, “Fabrication of miniaturized variable-focus lens using liquid filling technique,” Proceeding of 2007 Design, Test, Integration and Packaging of MEMS/MOEMS Conference, Stresa, Italy (2007) 377-382. 97.D.S. Kim, S.S. Yang, S.K. Lee, T.H. Kwon and S.S. Lee, “Physical molding and analysis of microlens formation fabricated by a modified LIGA process,” Journal of Micromechanics and Microengineering 13 (2003) 523–531. 98.R.K. Roy, A primer on the Taguchi Method, New York, Van Nostrand Reinhold (1990). 99.S. Matsui, “Nanostructure fabrication using electron beam and its application to nanometer devices,” Proceedings of the IEEE. 85 (1997) 629-643. 100.Y. Kojima, H. Kitahara, O. Kason, M. Katsumura and Y. Wada, “High Density Mastering Using Electron Beam,” Japan Journal of Applied Physics 37 (1998) 2137-2143. 101.E. Ainley, K. Nordquist, D.J. Resnick, D.W. Carr and R.C. Tiberio, “Process optimization of a chemically amplified negative resist for electron beam exposure and mask making applications,” Microelectronic Engineering 46 (1999) 375-378. 102.T.R. Groves, D. Pickard, B. Rafferty, N. Crosland, D. Adam, G. Schubert, “Maskless electron beam lithography: prospects, progress, and challenges,” Microelectronic Engineering 61 (2002) 285-293. 103.G. Cartwright, G. Reynolds, C. Baylis, A. Pearce, C. Dix and N. Ogilvie, “Electron beam recording of optical disc,” Journal of Magnetism and Magnetic Materials 249 (2002) 442-446. 104.S. Hosaka, T. Suzuki, M. Yamaoka, K. Katoh, F. Isshiki, M. Miyamoto, Y. Miyauchi, A. Arimoto and T. Nishida, “XY stages driving an electron beam mastering system for high density optical recording,” Microelectronic engineering 61 (2002) 309-316. 105.A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Optical Engineering 39 (2000) 2171-2176. 106.M. Paunovic and M. Schlesinger, Fundamentals of electrochemical deposition, New York, Wiley (1998). 107.Y.C. Chang, T.H. Hung, H.M. Chen, J.C. Huang, T.G. Nieh, C.J. Lee, “Viscous flow behavior and thermal properties of bulk amorphous Mg58Cu31Y11 alloy,” Intermetallics 15 (2007) 1303-1308. 108.C.T. Pan, T.T. Wu, M.F. Chen, Y.C. Chang, C.J. Lee, J.C. Huang, “Hot Embossing of Micro-Lens Array on Bulk Metallic Glass,” Sensors and Actuators A 141 (2008) 422-431. 109.W.M. Choi and O.O. Park, “A soft-imprint technique for direct fabrication of submicron scale patterns using a surface-modified PDMS mold,” Microelectronic Engineering 70 (2003) 131-136. 110.W.M. Choi, O.O. Park, “A soft-imprint technique for submicron-scale patterns using a PDMS mold,” Microelectronic Engineering 73-74 (2004) 178-183. 111.T. Fujii, “PDMS-based microfluidic devices for biomedical applications,” Microelectronic Engineering 61-62 (2002) 907-914. 112.E. Eteshola, D. Leckband, “Development and characterization of an ELISA assay in PDMS microfluidic channels,” Sensors and Actuators B 72 (2001) 129-133.
|