跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 01:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳明發
研究生(外文):Ming-Fa Chen
論文名稱:具有雙層微透鏡陣列結構之擴散膜片設計與製作
論文名稱(外文):Design and Fabrication of A Diffuser Film with Two Layers of Microlens Arrays
指導教授:潘正堂黃永茂
指導教授(外文):C.T. PanY.M. Hwang
學位類別:博士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:184
中文關鍵詞:多角型微透鏡陣列擴散膜片均勻度填充率
外文關鍵詞:polygonal microlens arrayfill-factoruniformitydiffuser film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:481
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光學膜片,是在透明的薄膜上,有著集合微小型透鏡成一陣列樣式,並且能應用在不同的領域或產品的一種元件。在平面顯示器中,光學膜片是一個重要的零件,能用於改善顯示器的發光效率和品質。在此篇論文,有一稱為「擴散膜片」的產品被成功開發、製造,兩種不同的微透鏡陣列製作在一片薄膜的兩面為此產品的特色。此光學膜片具有提升光源的亮度和均勻度的功能。同時,在此文章中,有數種不同的微透鏡陣列被發表,包含了無縫和有縫的六角型微透鏡陣列、無縫雙曲率微透鏡陣列以及擁有兩種微透鏡陣列的擴散膜片。製作這些微結構的製程,被稱為多角型微透鏡陣列製程。此製程具有大量生產、多角型外型和100%的填充率(Fill-factor)的特點。其基本程序保含了黃光微影、熱回流、濺鍍、電鑄和複製等製程。在複製的製程中,一種高分子材料的軟模具和鎳鈷合金材料的金屬模具被使用於複製微透鏡陣列。在本論文中,有多種複製的製程被採用,且持續地進行改良,以求得最適合的製作方式。
使用光學膜片的主要目的,是增進發光源的亮度和均勻度。吾人發現不同形狀和尺寸的微透鏡陣列,能表現出不同的光分佈。為了尋求較適合且創新的結構排列,利用了搭配模擬的「田口法」以設計複合式光學膜片上的微透鏡結構。最後,量測此光學膜片的光學效果,並驗證其實驗結果和設計理論的差異。根據其結果,光強度的平均值和訊雜比(S/N ratio)的比較均進行了討論,顯示兩者的表現趨勢是相同的。
Integrated microlens array on a transparent film, called an optical film, provides interesting applications for various fields. In a FPD (Flat Panel Display), the optical films are the more important components to improve the efficiency and quality. In this dissertation, a diffuser film which consisted of two different microlens arrays on the two surfaces of a film was developed and used to enhance the brightness and uniformity of a light source. There were also several microlens arrays developed, such as a hexagonal microlens array with gap and gapless, a gapless dual-curvature microlens array and a diffuser film.
A process called polygonal microlens array process had been used to manufacture them. It had advantages of mass production, various polygonal shapes and 100% fill-factor. A softer mold of PDMS and a metal mold of NiCo alloy were utilized to replicate the MLAs. In this dissertation, several replication processes were applied to mass product and to find out which one is more suitable for the diffuser film.
In this dissertation, the results of different shapes and dimensions of microlens arrays showed various light distribution. Therefore, for searching a more suitable and novel layout of a diffuser, Taguchi Method with simulation was used to design the layout of a diffuser film before fabrication process. Finally, a diffuser film was measured and demonstrated its optical effects. According to the results of measurement and simulation, the average intensity and the S/N ratios were shown. The trend of simulation and measurement was also similar.
LIST OF TABLE VI
LIST OF FIGURE VII
A Symbol Index XIV
摘要 XV
Abstract XVI

Chapter 1 Introduction 1
1.1 Background 1
1.2 Research of relative literature 10
1.3 Purpose and skeleton of this dissertation 19

Chapter 2 The theory of design for polygonal microlens array and a diffuser film 22
2.1 Introduction 22
2.2 The theory of a microlens 23
2.2.1 Law of refraction 23
2.2.2 Refractive elements 25
2.2.3 The design of a microlens 29
A general case of a spherical interface 30
General formulas of a plano-convex microlense 33
A predictable formula of thickness of photoresist 35
2.3 The design of a hexagonal and a dual-curvature microlens arrays 38
2.3.1 A mask for the gapless hexagonal microlens array 39
2.3.2 The controlling method of different dimensions for a hexagonal microlens array 40
2.3.3 Principles of design of a gapless dual-curvature microlens array 43
2.3.4 The calculation for optical effects 44
2.4 Design of a diffuser film by Taguchi Method 45
2.4.1 Introduction of Taguchi Method 45
2.4.2 The S/N ratio for analysis 46
2.4.3 Analysis method 48
2.4.4 The factors and Level of dimensions in a diffuser film 48
2.5 The studying procedure of a diffuser film with Taguchi Method 55

Chapter 3 A molding process of electroplating and hot embossing 59
3.1 Introduction 59
3.2 The molding idea for an optical disk with high storage capacity 61
3.3 Process procedures 62
3.3.1 Experimental setup 62
3.3.2 Electron beam lithography 64
3.3.3 High-hardness electroplating process 64
3.3.4 Replication process 66
3.4 Experimental results of the electron beam mastering process and the molding process 67
3.5 Conclusions of the experiment 72

Chapter 4 The polygonal microlens arrays 74
4.1 Introduction 74
4.2 The polygonal MLA process 75
4.2.1 Lithography process 76
4.2.2 Reflow process 77
4.2.3 NiCo alloy electroplating process 78
4.2.4 Passivation treatment 80
4.2.5 Second electroplating process 81
4.2.6 A replication process for the microlens array 82
4.3 The results of a gapless hexagonal microlens array 85
4.4 Hexagonal microlens arrays with different dimensions and fill-factor 89
4.4.1 Measurement of seven microlens arrays 90
4.4.2 The test results of the seven arrays 94
4.5 A gapless dual-curvature microlens array 102
4.5.1 Calculations of three MLAs 102
4.5.2 A new material of the stamp in the fabrication processes 107
4.5.3 Results of the fabrication processes and the optical tests 113
4.6 Conclusions of polygonal microlens arrays 118

Chapter 5 The deign and fabrication of a diffuser film 120
5.1 Introduction 120
5.2 Results of Taguchi Method 122
5.2.1 The optimal condition of a diffuser film 122
5.2.2 The masks in the experiments 126
5.3 Results of a diffuser film 129
5.3.1 Fabrication of a diffuser film 129
5.3.2 The results of the fabrication processes 131
5.3.3 The results of the optical measurement 145
5.4 Conclusion of this chapter 148

Chapter 6. Conclusions and further study. 151
6.1 The development of a polygonal microlens array 152
6.1.1 A Molding Process of Electroplating and Hot Embossing 152
6.1.2 The polygonal microlens array 153
6.1.3 The deign and fabrication of a diffuser film 154
6.2 The optical films and their optical effects 155
6.3 Contribution of this study 156
6.4 Further study of a gapless microlens array 157
Reference 159
1.A. Akatay and H. Urey, “Design and optimization of microlens array based high resolution beam steering system,” Optics Express, 15(8) (2007) 4523-4529.
2.K. Hedsten, J. Melin, J‥. Bengtsson, P. Modhc, D. Karl′en, B. L‥ofving, R. Nilsson, H. R‥odjeg°ard, K. Persson, P. Enoksson, F. Nikolajeff and G. Andersson, “MEMS-based VCSEL beam steering using replicated polymer diffractive lens,” Sensors and Actuators A 142 (2008) 336–345.
3.A. Tuantranont, V.M. Bright, J. Zhang, W. Zhang, J.A. Neff, Y.C. Lee, “Optical beam steering using MEMS-controllable microlens array,” Sensors and Actuators A 91 (2001) 363-372.
4.L. C. Ling, Y. I. Yen, F. C. Ho, “An efficient illumination system for single-pane LCD projector,” SID 01 DIGEST, (2001) 1184-1187.
5.C. Ke, X. Yi, Z. Xu, J. Lai, “Monolithic integration technology between microlens arrays and infrared charge coupled devices,” Optics & Laser Technology 37 (2005) 239-243.
6.F. Li, X. Li, J. Zhang, and B. Yang, “Enhanced light extraction from organic light-emitting devices by using microcontact printed silica colloidal crystals,” Organic Electronics 8 (2007) 635–639.
7.S. Mo‥ller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” Journal of Applied Physics Vol. 91, No. 5 (2002) 3324-3327.
8.J. Duparre′ , D. Radtke, and P. Dannberg, “Implementation of field lens arrays in beam-deflecting microlens array telescopes,” Applied Optics, 43(25) (2004) 4854-4861.
9.Y. Choi, J.H. Park, J.H. Kim, S.D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Optical Materials 21 (2002) 643-646.
10.H. Ren, Y.H. Lin, S.T. Wu, “Flat polymeric microlens array,” Optics Communications 261 (2006) 296-299.
11.H. Ren, Y.H. Fan, S. Gauza, S.T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Optics Communications 230 (2004) 267-271.
12.J. Chen, W. Wang, J. Fang and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” Journal of Micromechanics and Microengineering 14 (2004) 675-680.
13.W. Wang and J. Fang, “Design, fabrication and testing of a micromachined integrated tunable microlens,” Journal of Micromechanics and Microengineering 16 (2006) 1221-1226.
14.Y.J. Chang, K. Mohseni, and V.M. Bright, “Fabrication of tapered SU-8 structure and effect of sidewall angle for a variable focus microlens using EWOD,” Sensors and Actuators A 136 (2007) 546-553.
15.K.S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg and S. Yang, “Tunable microfluidic optical devices with an integrated microlens array,” Journal of Micromechanics and Microengineering 16 (2006) 1660-1666.
16.C.C. Yang, Y.H. Huang, T.C. Peng, M.C. Wu, C.L. Ho, C.C. Hong, I. M. Liu and Y.T. Tsai, “Fabrication of a vertical reflow microlens with silylation technology,” Sensors and Actuators A 136 (2007) 398-402.
17.P. Ruther, B. Gerlach, J. G‥ottert, M. Ilie, J. Mohr, A. M‥uller and C. Oßmann, “ Fabrication and characterization of microlenses realized by a modified LIGA process,” Pure and Applied Optics 6 (1997) 643-653.
18.K.W. Jo, M.S. Kim, J.H. Lee, E.K. Kim and K.H. Park, “Optical characteristics of a self-aligned microlens fabricated on the sidewall of a 45° angled optical fiber,” IEEE Phptpnics Technology Letters, 16(1) (2004) 138-140.
19.C.V. Berkel, B.P McGarvey and J.A. Clarke, “Microlens arrays for 2D large area images sensors,” Pure and Applied Optics 3 (1994) 177-182.
20.M. Ares, S. Royo, and J. Caum, “Shack-Hartmann sensor based on a cylindrical microlens array,” Optics Letters, 15(7) (2007) 769-771.
21.M.H. Wu and G.M. Whitesides, “Fabrication of two-dimensional arrays of microlenses and their application in photolithography,” Journal of Micromechanics and Microengineering 12 (2002) 747-758.
22.M.H. Wu, K.E. Paul, and G.M. Whitesides, “Patterning flood illumination with microlens arrays,” Applied Optics, 41(13) (2002) 2575-2585.
23.C.S. Lim, M.H. Hong, Y. Lin, G.X. Chen, A.S. Kumar, M. Rahman, L.S. Tan, J.Y.H. Fuh, and G.C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” Journal of Materials Processing Technology 192-193 (2007) 328-333.
24.S.K. Rotich, J.G. Smith, A.G.R. Evans and A. Brunnschweiler, “Micromachinged thin solar cells with a novel light trapping scheme,” Journal of Micromechanics and Microengineering 8 (1998) 134-137.
25.C. Hembd-S‥olner, R.F. Stevens and M.C. Hutley, “Imaging properties of the Gabor superlens,” Pure and Applied Optics 1 (1999) 94-102.
26.J. Seo and L.P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sensors and Actuators B 99 (2004) 615-622.
27.T. Hirai and S. Hayashi, “Lens functions of polymer microparticle arrays,” Colloids and Surfaces A: Physiochemical and Engineering Aspects 153 (1999) 503-513.
28.S.K. Lee1, K.C. Lee and S.S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” Journal of Micromechanics and Microengineering 12 (2002) 334-340.
29.C.H. Chien, C.T. Pan, C.C. Hsieh, C.M. Yang, K.L. Sher, “A study of the geometry of microball lens arrays using the novel batch-fabrication technique,” Sensors and Actuators A 122 (2005) 55-63.
30.C.R. King, L.Y. Lin and M.C. Wu, “Out-of plane refractive microlens fabricated by surface micromaching,” IEEE Photonics Technology Letters, Vol. 8, No. 10 (1996) 1349-1351.
31.Y.S. Lin, C.T0 Pan, K.L. Lin, S.C. Chen, J.J. Yang, and J.P. Yang, “Polyimide as the pedestal of batch fabricated micro-ball lens and micro-mushroom array,” Micro Electro Mechanical Systems, 2001. MEMS 2001. The 14th IEEE International Conference, (2001), 337-340.
32.Zoran D. Popovic, Robert A. Sprague, and G. A. Neville Connell, “Technique for monolithic fabrication of microlens arrays,” Applied Optics 27(7) (1988) 1281-1297.
33.C.P Lin, H. Yang and C.K. Chao, “A new microlens array fabrication method using UV proximity printing,” Journal of Micromechanics and Microengineering 13 (2003) 748-757.
34.R. Yang and W. Wang, “Out-of-plane polymer refractive microlens fabricated based on direct lithography of SU-8,” Sensors and Actuators A 113 (2004) 71-77.
35.S. Sugiyama, S. Khumpuang and G. Kawaguchi, “Plain-pattern to cross-section transfer (PCT) technique for deep x-ray lithography and applications,” Journal of Micromechanics and Microengineering 14 (2004) 1399-1404.
36.M.C. Hutley, “Optical techniques for the generation of microlens arrays,” Journal of Modern Optics, 37(2) (1990) 253-265.
37.N.F. Borrelli, D.L. Morse, R.H. Bellman and W.L. Morgan, “Photolytic technique for producing microlenses in photosensitive glass,” Applied Optics 24(16) (1985) 2520-2525.
38.B. Muric′, D. Pantelic′, D. Vasiljevic′, B. Panic′, “Microlens fabrication on tot’hema sensitized gelatin,” Optical Materials 30 (2008) 1217-1220.
39.M. Wakaki, Y. Komachi and G. Kanai, “Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser,” Applied Optics 37(4) (1998) 627-631.
40.F. Beinhorn, J. Ihlemann, K. Luther, J. Troe, “Micro-lens arrays generated by UV laser irradiation of doped PMMA,” Journal of Applied Physics A 68 (1999) 709-713.
41.M. He, X.C. Yuan, N.Q. Ngo, J. Bu and S.H. Tao, “Single-step fabrication of a microlens array in sol-gel material by direct laser writing and its application in optical coupling,” Pure and Applied Optics 6 (2004) 94-97.
42.Y.C. Lee, C.M. Chen and C.Y. Wu, “A new excimer laser micromachining method for axially symmetric 3D microstructures with continuous surface,” Sensors and Actuators A 117 (2005) 349-355.
43.C.S. Lee and C.H. Han, “A novel refractive silicon microlens array using bulk micromachining technology,” Sensors and Actuators A 88 (2001) 87-90.
44.F.W. Ostermayer, Jr., P.A. Kohl, and R.H. Burton, “Photoelectrochemical etching of integral lenses on InGaAsP/InP light-emitting diodes,” Applied Physics Letter, 43(7) (1983) 642-644.
45.C.S. Lim, M.H. Hong, A. Senthil Kumar, M. Rahman and X.D. Liu, “Fabrication of concave microlens array using laser patterning and isotropic etching,” International Journal of Machine Tools & Manufacture 46 (2006) 552-558.
46.C. Tsou and C. Lin, “A new method for microlens fabrication by a heating encapsulated air process,” IEEE Photonics Technology Letters, 18(23) (2006) 2490-2492.
47.D.M. Hartmann, O. Kibar and S.C. Esener, “Optimization and theoretical modeling of polymer microlens array fabricated with the hydrophobic effect,” Applied Optics, 40(16) (2001) 2736-2746.
48.W.K. Huang, C.J. Ko and F.C. Chen, “Organic selective-area patterning method for microlens array fabrication,” Microelectronic Engineering 83 (2006) 1333-1335.
49.S. Moon, N. Lee and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” Journal of Micromechanics and Microengineering 13 (2003) 98-103.
50.R.K. Dutta, J.A. van Kan, A.A. Bettiol, F. Watt, “Polymer microlens replication by nanoimprint lithography using proton beam fabricated Ni stamp,” Nuclear Instruments and Methods in Physics Research B 260 (2007) 464-467.
51.D.S. Ko, “A decompression method for the fabrication of polymer microlens arrays,” Infrared Physics & Technology 45 (2004) 177-180.
52.Y. Fu, “Investigation of microlens mold fabricated by focused ion beam technology,” Microelectronic Engineering 56 (2001) 333–338.
53.W. Choi, J. Lee, W.B. Kim, B.K. Min, S. Kang and S.J. Lee, “Design and fabrication of tungsten carbide mould with micro patterns imprinted by micro lithography,” Journal of Micromechanics and Microengineering 14 (2004) 1519-1525.
54.P. Merz, H.J. Quenzer, H. Bernt, B. Wagner and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” Transducers 1 (2003) 258-261.
55.Yang Chen, Allen Y Yi, Donggang Yao, Fritz Klocke and Guido Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” Journal of Micromechanics and Microengineering 18 (2008) 055022-055029..
56.Su-dong Moon, Shinill Kang and Jong-Uk Bu, “Fabrication of polymeric microlens of hemispherical shape using micromolding,” Optical Engineering 41(9) (2002) 2267-2270.
57.P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee and H.J. Cho, “Microlens fabrication using an etched glass master,” Microsystem Technology 13 (2007) 339-342.
58.T.K. Shin, J.R. Ho and J.W. John Cheng, “A new approach to polymertic microlens array fabrication using soft replica molding,” IEEE Photonics Technology Letters, 16(9) (2004) 2078-2080.
59.L. Desmet, S.V. Overmeire, J.V. Erps, H. Ottevaere, C. Debaes and H. Thienpont, “Elastomeric inverse molding and vacuum casting process characterization for the fabrication,” Journal of Micromechanics and Microengineering 17 (2007) 81–88.
60.C.Y. Chang, S.Y. Yang and M.H. Chu, “Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process,” Microelectronic Engineering 84 (2007) 355-361.
61.C.Y. Chang, S.Y. Yang, L.S. Huang and J.H. Chang, “Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon,” Infrared Physics & Technology 48 (2006) 163–173.
62.H.J. Nam, D.Y. Jung, G.R. Yi and H. Choi, “Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres,” Langmuir 22 (2006) 7358-7363.
63.V. Bardinal, E. Daran, T. Leïchlé, C.Vergnenègre, C. Levallois, T. Camps, V. Conedera, J. B. Doucet and F. Carcenac, “Fabrication and characterization of microlens arrays using a cantilever-based spotter,” Optics Express 15(11) (2007) 6900-6907.
64.M. Kubo and M. Hanabusa, “Fabrication of microlenses by laser chemical vapor deposition,” Applied Optics 29(18) (1990) 2755-2759.
65.D.L. MacFarlane, V. Narayan, J.A. Taturn, W.R. Cox, T. Chen and D.J. Hayes, “Microjet fabricastion of microlens arrays,” IEEE Photonics Technology Letters, 6(9) (1994) 1112-1114.
66.H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff and H. Thienpont, “Two-dimaensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” Pure and Applied Optics 4 (2002) S22-S28.
67.J.R. Hoa, T.K. Shih, J.W. John Cheng, C.K. Sung and C.F. Chen, “A novel method for fabrication of self-aligned double microlens arrays,” Sensors and Actuators A 135 (2007) 465–471.
68.S. Chen, X. Yi and H. Ma, “A novel method of fabrication of microlens arrays,” Infrared Physics & Technology 44 (2003) 133–135.
69.C.T. Pan, “Design and fabrication of sub-micrometer eight-level bi-focal diffraction optical elements,” Journal of Micromechanics and Microengineering 14 (2004) 471–479.
70.K. Totsu, K. Fujishiro, S. Tanaka and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sensors and Actuators A 130-131 (2006) 387-392.
71.W. Da‥schner, P. Long, R. Stein, C. Wu and S.H. Lee, “General aspheric refractive micro-optics fabricated by optical lithography using a high energy,” The Journal of Vacuum Science and Technology B 14(6), (1996) 3730-3733.
72.H. Suzuki, T. Moriwaki, Y. Yamamoto and Y. Goto, “Precision cutting of aspherical ceramic molds with micro PCD milling tool,” Annals of the CIRP 56 (2007) 131-134.
73.Y.C. Lee and C.Y. Wu, “Excimer laser micromachining of aspheric microlenses with precise surface profile control and optimal focusing capability,” Optics and Lasers in Engineering 45 (2007) 116-125.
74.M. Oikawa and K. Iga, “Distributed-index planar microlens,” Applied Optics 21(6) (1982) 1052-1056.
75.N. Yamamoto, H. Nishi, K. Nishizawa and I. Kitano, “Selfoc microlens with a spherical surface,” Applied Optics 21(6) (1982) 1021-1023.
76.S. Chen, X. Yi, L. Kong, M. He and H. Wang, “Monolithic integration technique for microlens arrays with infrared focal plane arrays,” Infrared Physics & Technology 43 (2002) 109-112.
77.J.K. Ji and Y.S. Kwon, “Conical microlens arrays that flatten optical-irradiance profiles of nonuniform sources,” Applied Optics 34(16) (1995) 2841-2843.
78.T.K. Shih, C.F. Chen, J.R. Ho, F.T. Chuang, “Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectronic Engineering 83 (2006) 2499–2503.
79.S.I. Chang and J.B. Yoon, “Microlens array diffuser for a light-emitting diode backlight system,” Optics Letters 31(20) (2006) 3016-3018.
80.N.F. Borrelli, “Efficiency of microlens array for projection LCD,” IEEE 44th Electronic Components and Technology Conference (1994) 338-345.
81.A.Y. Smuk and N.M. Lawandy, “Direct laser fabrication of dense microlens arrays in semiconductor-doped glass,” Journal of Applied Physics, 87(8) (2002) 4026-4030.
82.C.P. Lin, H. Yang and C.K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” Journal of Micromechanics and Microengineering 13 (2003) 775–781.
83.H. Yang, C.K. Chao, M.K. Wei and C.P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” Journal of Micromechanics and Microengineering 14 (2004) 1197–1204.
84.M.C. Chou, C.T. Pan, S.C. Shen, M.F. Chen, K.L. Lin and S.T. Wu, “A Novel Method to Fabricate Gapless Hexagonal Micro-lens Array,” Sensors and Actuators A 118 (2005) 298-306.
85.C.T. Pan and C.H. Su, “Fabrication of gapless triangular micro-lens array,” Sensors and Actuators A 134 (2007) 631-640.
86.C.T. Pan and C.H. Su, “Fabrication of high fill factor optical film using two-layer photoresists,” Journal of Modern Optics 55(1) (2008) 33-42.
87.B. Li and Q. Chen, “Solid micromechanical valves fabricated with in situ UV-LIGA assembled nickel,” Sensors and Actuators A 126 (2006) 187-193.
88.W. Qu, C. Wenzel and G. Gerlach, “Fabrication of a 3D differential-capacitive acceleration sensor by UV-LIGA,” Sensors and Actuators 77 (1999) 14-20.
89.X.M. Jing, D. Chen, D. M. Fang, C. Huang, J.Q. Liu and X. Chen, “Multi-layer microstructure fabrication by combining bulk silicon micromachining and UV-LIGA technology,” Microelectronics Journal 38 (2007) 120–124.
90.Y.H. Zhang, G.F. Ding, S. Fu and B.C. Cai, “A fast switching bistable electromagnetic microactuator fabricated by UV-LIGA technology,” Mechatronics 17 (2007) 165-171.
91.E. Hecht, Optics, San Francisco, Assison Wesley (2002).
92.N.F. Borrelli, Microoptics technology, New York, Marcel Dekker (2005).
93.H. Toshiyoshi, G.D. John Su, J. LaCosse, and M. C. Wu, “A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process,” Journal of Lightwave Technology 21(7) (2003) 1700-1708.
94.Y.H. Lin, Student Member, IEEE, and W. Hsu, “A novel fabrication method of microlens array by surface tension and injection process,” Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand (2007) 443-446.
95.C.K. Chung and Y.Z. Hong, “Fabrication and analysis of the reflowed microlens arrays using JSR THB-130 N photoresist with different heat treatments,” Microsystem Technology 13 (2007) 523-530.
96.H. Yang, C.Y. Yang and M.S. Yeh, “Fabrication of miniaturized variable-focus lens using liquid filling technique,” Proceeding of 2007 Design, Test, Integration and Packaging of MEMS/MOEMS Conference, Stresa, Italy (2007) 377-382.
97.D.S. Kim, S.S. Yang, S.K. Lee, T.H. Kwon and S.S. Lee, “Physical molding and analysis of microlens formation fabricated by a modified LIGA process,” Journal of Micromechanics and Microengineering 13 (2003) 523–531.
98.R.K. Roy, A primer on the Taguchi Method, New York, Van Nostrand Reinhold (1990).
99.S. Matsui, “Nanostructure fabrication using electron beam and its application to nanometer devices,” Proceedings of the IEEE. 85 (1997) 629-643.
100.Y. Kojima, H. Kitahara, O. Kason, M. Katsumura and Y. Wada, “High Density Mastering Using Electron Beam,” Japan Journal of Applied Physics 37 (1998) 2137-2143.
101.E. Ainley, K. Nordquist, D.J. Resnick, D.W. Carr and R.C. Tiberio, “Process optimization of a chemically amplified negative resist for electron beam exposure and mask making applications,” Microelectronic Engineering 46 (1999) 375-378.
102.T.R. Groves, D. Pickard, B. Rafferty, N. Crosland, D. Adam, G. Schubert, “Maskless electron beam lithography: prospects, progress, and challenges,” Microelectronic Engineering 61 (2002) 285-293.
103.G. Cartwright, G. Reynolds, C. Baylis, A. Pearce, C. Dix and N. Ogilvie, “Electron beam recording of optical disc,” Journal of Magnetism and Magnetic Materials 249 (2002) 442-446.
104.S. Hosaka, T. Suzuki, M. Yamaoka, K. Katoh, F. Isshiki, M. Miyamoto, Y. Miyauchi, A. Arimoto and T. Nishida, “XY stages driving an electron beam mastering system for high density optical recording,” Microelectronic engineering 61 (2002) 309-316.
105.A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Optical Engineering 39 (2000) 2171-2176.
106.M. Paunovic and M. Schlesinger, Fundamentals of electrochemical deposition, New York, Wiley (1998).
107.Y.C. Chang, T.H. Hung, H.M. Chen, J.C. Huang, T.G. Nieh, C.J. Lee, “Viscous flow behavior and thermal properties of bulk amorphous Mg58Cu31Y11 alloy,” Intermetallics 15 (2007) 1303-1308.
108.C.T. Pan, T.T. Wu, M.F. Chen, Y.C. Chang, C.J. Lee, J.C. Huang, “Hot Embossing of Micro-Lens Array on Bulk Metallic Glass,” Sensors and Actuators A 141 (2008) 422-431.
109.W.M. Choi and O.O. Park, “A soft-imprint technique for direct fabrication of submicron scale patterns using a surface-modified PDMS mold,” Microelectronic Engineering 70 (2003) 131-136.
110.W.M. Choi, O.O. Park, “A soft-imprint technique for submicron-scale patterns using a PDMS mold,” Microelectronic Engineering 73-74 (2004) 178-183.
111.T. Fujii, “PDMS-based microfluidic devices for biomedical applications,” Microelectronic Engineering 61-62 (2002) 907-914.
112.E. Eteshola, D. Leckband, “Development and characterization of an ELISA assay in PDMS microfluidic channels,” Sensors and Actuators B 72 (2001) 129-133.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top