(3.235.139.152) 您好!臺灣時間:2021/05/11 06:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王偉名
研究生(外文):Wei-Ming Wang
論文名稱:矩形板受不均勻負載之振動分析
論文名稱(外文):Vibration Analysis of Rectangular Plates Subjected to Non-Uniform Loading
指導教授:劉崇富劉崇富引用關係
指導教授(外文):Liu, Chorng-Fuh
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:85
中文關鍵詞:正弦函數不均勻負載矩形板振動
外文關鍵詞:rectangular platevibrationnon-uniform loadingsine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基於平板預加應力振動研究一般以均勻分佈力為主,因此本文將探討施以正弦函數分佈力的平板振動問題。研究方法是以一階剪切變形板理論為基礎,使用有限元素法分析其振動頻率之變化。結果得知對於邊界條件為CCCC、SSSS、CFCF、SFSF之平板,施以對稱正弦函數分佈之預加負載於兩相對邊的時候,頻率會隨著模態數增加而上升而後趨緩。增加正弦波數目時,頻率會先短暫上升後下降,此種頻率的變化只有當邊界條件為SFSF的低模態振動時,才比較明顯。
Due to most studies on vibration of pre-loaded rectangular plate being subject to uniform loading, this thesis will investigate vibration of plate under preloading with sine functional distributions.
The approach behind this study is using first-order shear deformation plate theory and finite element method to analyze vibration frequency.
Study results show that, when a plate’s boundary condition is CCCC, SSSS, CFCF, or SFSF with sine functional pre-loading, its vibration frequency will increase to an extent with little difference when the number of modes increases. Vibration frequency will increase shortly then decrease when increasing the number of sine waves. Vibration frequency will also increase when increasing stress parameters. However, obvious frequency changes are observed only at lower modes with SFSF boundary condition.
第一章 緒論 .......................1

1.1前言.......................1

1.2文獻回顧.....................2

1-2-1古典板理論.................2

1-2-2 一階剪切變形板理論.............4

1-2-3高階平板理論................5

1-2-4三維彈性力學..............6

第二章 矩形版之振動分析理論............7

2.1前言......................7

2.2自由振動有限元素列式............7

2.3受負載之振動有限元素列式.........12

2.4挫曲....................15

2.5均勻與不均勻施力分佈.............17


第三章 問題解析...................21

3.1前言....................21

3.2問題描述..................21

第四章 結果與討論..................26

4.1前言....................26

4.2文獻比較..................26

4.3非均勻預加負載................28

第五章 結論與建議..................65

5.1結論....................65

5.2建議....................65

參考文獻.........................67

附 錄.........................72
1. Loard Rayleigh 1877 Theory of sound, Volume 1.London: Macmillan; Reprinted 1945 by Dover, New York.

2. C. Ugural and K. Fenster 2004 “Advanced strength and applied
elasticity, 4e”. Prentice Hall PTR.

3. S. M. Vogel and D. W. Skinner 1965 Natural frequencies of transversely
vibration uniform annular plates. Journal of Applied Mechanics 32, 926-931.

4. K. Vijayakumar and G. K. Ramaiah 1972 On the use of a coordinate
orthotropic transformation for analysis of axisymmetric vibration of
polar annular plates. Journal of Sound and Vibration 24(2),165~175.

5. G. K. Ramaiah and K. Vijayakumar 1973 Natural frequencies of polar orthotropic annular plates. Journal of Sound and Vibration 26(4), 517~531.

6. G. K. Ramaiah 1980 Flexural vibrations of annular plates under uniform in-plane compressive forces. Journal of Sound and Vibration 70(1), 117~131.

7. G. K. Ramaiah 1980 Flexural vibrations and elastic stability of annular plates under uniform in-plane tensile forces along the inner edge. Journal of Sound and Vibration 72(1), 11~23.

8. Y. Narita 1984 Free vibration of continuous polar orthotropic annular and circular plates. Journal of Sound and Vibration 93(4), 503~511.

9. H.N. Chauhan and G. Herrmann 1956 Influence of large amplitudes on free
flexural vibrations of elastic plates. Journal of Applied Mechanics 23, 532~540.

10. P. Shuleshko 1956 Buckling of rectangular plates uniformly compressed in two perpendicular directions with one free edge and opposite
edge elastically restrained. J. Appl. Mech. Trans. ASME 78, 359~363.

11. P. Shuleshko 1957 Buckling of rectangular plates with two unsupported edges. J. Appl. Mech. Trans. ASME 79, 537~540.

12. A.P. Chauhan and D.G. Ashwell 1969 Small and large amplitude free vibrations of square shallow shells. International Journal of
Mechanics Sciences 11, 337~350.

13. A. Rosen and A. Libai 1974 Stability, behavior and vibrations of an
annular plate under uniform compression.Department of Aeronautical
Engineering, Technion-Israel Institute of Technology, Haifa, Israel,
T.A.E. Report No.229.

14. A. Rosen and A. Libai 1975 Transvers vibrations of compressed annular plates. Journal of Sound and Vibration 40(1), 149~153.

15. R. D. Mindlin 1951 Influence of ratotary inertia and shear on flexural motions of isotropic, elastic plates. Journal of Applied Mechanics 18,31~38.

16. R. D. Mindlin and H. Deresiewicz 1954 Thickness-shear and flexural Vibrations of a circular disk. Journal of Applied Physics 25, 1329~1332.

17. Whitney, J. M. and Pagano, N. J. 1970 Shear Deformation in Heterogenous
Anisotropic Plates. Journal of Applied Mechanics 37, 1031~1036.

18. T. Irie, G. Yamada and S. Aomura 1979 Free vibration of Mindlin annular plates of varying thickness. Journal of Sound and Vibration 66(2), 187~197.

19. S. S. Rao 1975 Vibrations of annular plates including the effects of rotatory inertia and transverse shear deformation. Journal of Sound and Vibration 42(3), 305~324.

20. E. J. Brunelle and S. R. Robertson 1974 Initially stressed Mindilin Plates. American Institute of Aeronautics and Astronautics Journal 12, 1036~1045.

21. R.D. Mindlin, A. Schacknow and H. Deresiewicz 1956 Flexural vibrations of rectangular plates. Journal of Applied Mechanics 23, 430~436.

22. D. J. DAWE 1978 Finite strip models for vibration of Mindlin plates.
Journal of Sound and Vibrarion 59, 441~452.

23. J. Giri and G. J. Simitses 1980 Deflection response of general laminated composite plates to in-plane and transverse loads. Fibre Science and Technology 13, 225~242.

24. D.J. Dawe and O.L. Roufaeil 1980 Rayleigh-Ritz vibration analysis of Mindlin plates. Journal of Sound and Vibration 69(3), 345~359.

25. K. H. Lo, R. M. Christensen and E. M. Wu 1977 A high-order theory of plate deformation, part1:homogeneous plates. Journal of Applied Machanics 44, 663~668.

26. R. B. Nelson and D. R. Lorch 1974 A refined theory of laminated Orthotropic plates. Journal of Applied Machanics 41, 177~183.

27. M. Levinson 1980 An accurate simple theory of the statics and dynamics of elastic plates. Mechanics Research Communications 7,343~350.

28. J. N. Reddy 1984 A simple higher-order theory for laminated composite
plates. Journal of Applied Machanics 51, 745~752.

29. G. M. L. Gladwell and D. K. Vijay 1975 Natural frequencies of finite-length circular cylinders. Journaal of Sound and Vibration 42, 387~397.

30. S. Latha Nayar, K. Kanaka Raju and G. Venkateswara Rao 1994
Axisymmetric free vibration of moderately thick annular plates with initial stresses. Journaal of Sound and Vibration 178(4), 501~511.

31. C. F. Liu and G. T. Chen 1995 A simple finite element analysis of axisymmetric vibration of annular and circular plates. Int. J. Mech. Sci. 37(8), 861~871.

32. C. F. Liu and Y. T. Lee 2000 Finite element analysis of three- dimensional vibrations of thick circular and annular plates. Journaal of Sound and Vibration 233(1), 63~80.

33. U. Galvanetto and C. Pellegrino 1998 A three dimensional stress
recovery procedure for composite materials. Computers and Structures
69, 567~575.

34. P. A. A. Laura, H. A. Larrondo, V. H. Cortinez and D. R. Avalos 1991
Transverse vibrations of rectangular plates of non-uniform thickness
subjected to a uniform state of in-plane stress. Journaal of Sound
and Vibration 151, 175~180.

35. T. M. Teo and K. M. Liew 1999 A differential quadrature Procedure for
three-dimensional buckling analysis of rectangular plates. Journaal
of Solids and Structures 36, 1149~1168.

36. O. L. Roufaeil and D. J. Dawe 1982 Rayleigh-Ritz vibration analysis
of rectangular Mindlin plates subject to memberane stress. Journaal
of Sound and Vibration 85(2), 263~275.

37. C. W. Lim, K. M. Liew and S. Kitipornchai 1998 Numerical aspects for
free vibration of thick plates Part I : Formulation and verification.
Computer methods in applied mechanics and engineering 156, 15~29.

38. C. Mei and T. Y. Yang 1972 Free vibrations of finite element plates
subjected to complex middle-plane force systems. Journaal of Sound
and Vibration 23, 145~156.

39. K. M. Liew and T. M. Teo 1999 Three dimensional vibration analysis
of rectangular plates based on differential quadrature method.
Journaal of Sound and Vibration 220, 577~599.

40. K. M. Liew, J. Wang, T. Y. Ng and M. J. Tan 2004 Free vibration and
buckling analyses of shear-deformable plates based on FSDT meshfree
method. Journaal of Sound and vibration 276, 199~1017.

41. Xinwei Wang, Lifei Gan and Yihui Zhang 2008 Differential quadrature
analysis of the buckling of thin rectangular plates with cosine-
distributed compressive loads on two opposite sides. Advances in
Engineering software 39, 497~504.

42. D. J. Dawe and O. L. Roufaeil 1980 Rayleigh-Ritz vibration analysis
of Mindlin plates. Journaal of Sound and vibration 69(3), 345~359.

43. Y. Xing 1993 Numerical developments in solveing the buckling and
vibration of Mindlin plates. Ph. D. thesis, The University of
Queensland, Australia.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔