(3.210.184.142) 您好!臺灣時間:2021/05/12 03:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳以諾
研究生(外文):Yi-No Chen
論文名稱:檢測潤滑油的鐵顆粒濃度及黏度之整合裝置
論文名稱(外文):An integrated apparatus for detecting the ferrous debris concentration and the viscosity of lubricating oils
指導教授:李榮宗李榮宗引用關係
指導教授(外文):Rong-Tsong Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:74
中文關鍵詞:潤滑油檢測黏度鐵相分析
外文關鍵詞:oil detectingviscosityferrography
相關次數:
  • 被引用被引用:4
  • 點閱點閱:535
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究設計並製作一套整合鐵顆粒濃度量測單元以及黏度量測單元之檢測裝置。兩量測單元分別從設計模型之理論分析、元件組件之設計製圖與加工乃至實體組裝完成。最後此整合裝置再經反覆的檢測性能分析。
  在鐵顆粒濃度量測單元中,利用磁路的歐姆定律以及磁阻定律設計電磁鐵磁極之結構及磁場強度,使潤滑油中鐵顆粒被吸附之位置集中。此被吸附之鐵顆粒與磁通感測器呈串聯磁路。測試結果顯示此磁通感測器量測鐵顆粒濃度之靈敏度比舊有並聯方式高約600倍。以相同樣品油重複測試八次所測得濃度值之重現性誤差達 ± 0.3ppm以內。
  在黏度量測單元中,使用活塞擠壓潤滑油的方式來量測黏度,並且量測單元內容易清洗乾淨,因而提升黏度量測精度與重現性。以相同樣品油重複測試八次所測得黏度值之重現性誤差達 ± 5%以下。
  兩量測單元已整合成為一檢測裝置,其量測精度與重現性互不干涉,且僅需一次樣品油分析流程即可量測鐵磨耗顆粒濃度以及黏度值。因此使用者可藉此檢測裝置,檢測循環於機械設備中之潤滑油,即時掌握設備磨耗情形以及潤滑油劣化情形。
  An integrated device, which can be used to detect the ferrous particle concentration and the viscosity of the lubricating oils, is designed and manufactured. These two measurement units are conducted through the theoretical analysis of the design model, and the design drawing, the manufacturing, and the assembly of the components, respectively. Finally, the experiments are conducted to detect the performance of this integrated device.
  In the measurement unit of the ferrous particle concentration, the geometry for the poles of the magnet and the air-gap flux density are designed using the Ohm’s law and the magnetic hysteresis law, so that the ferrous particles in the lubricating oils is captured by the magnetic attraction at the air gap between the poles of the magnet. The pile of ferrous particles is connected with the Hall-effect sensors into a magnetic circuit. Results show that the sensitivity of the ferrous concentration measured using the magnetic circuit in series is about 600 times that using the magnetic circuit in parallel. The error is less than 0.3 ppm under the eight repeat tests.
  In the measurement unit of the viscosity of the lubricating oils, the piston is squeezed into the oil to measure the viscosity. Since the container is easy to clean, the precision and the repeatability can be promoted. The error is less than 5% under the eight repeat tests.
  When these two units are integrated into a measuring device, it is found that the interference between them can be neglected, and only one analysis procedure of sample oil can measure the ferrous particle concentration and the viscosity of the lubricating oils. Hence, the user can detect the lubricating oils used in many machines using this device to understand the abnormal wear and the deterioration of the oil.
誌謝..................................................................................II
總目錄.............................................................................III
圖目錄.............................................................................VI
表目錄.............................................................................IX
摘要.................................................................................X
Abstract..........................................................................XI
第一章 緒論.....................................................................1
1.1磨潤問題改善的必要性............................................1
1.2 機械壽命判定方式...................................................2
1.3 鐵相分析儀的發展...................................................3
1.3.1 鐵相分析的必要性................................................3
1.3.2 非線上(Off-line)鐵相分析儀的發展....................4
1.3.3 線上(On-line)鐵相分析儀的發展........................7
1.3.4 線上與非線上鐵相分析儀之互補應用性............9
1.4潤滑油黏度之量測及其重要性...............................10
1.5 鐵顆粒濃度與黏度之整合監測儀器......................12
1.6 本研究的目標..........................................................13
第二章 檢測器之設計理論............................................14
2.1 鐵顆粒濃度量測......................................................14
2.1.1 以往的量測方式...................................................14
a. 並聯磁路磁通感測.....................................................14
b. 串聯磁路磁通感測.....................................................15
2.1.2 本研究的量測方式...............................................16
a. 設計過程.....................................................................16
b. 設計結果與理論分析.................................................17
2.2 黏度量測..................................................................19
2.2.1 以往的量測方式...................................................19
2.2.2 本研究的量測方式...............................................19
a. 設計需求及過程.........................................................19
b. 設計結果之理論分析.................................................21
c. 細部設計與零件組合圖.............................................25
第三章 檢測系統之設計與製造....................................27
3.1 整合檢測系統設計...................................................27
3.1.1 系統設計概念.......................................................27
3.1.2 系統運作流程.......................................................29
3.2 鐵顆粒濃度量測單元...............................................30
3.2.1 加工方法與過程...................................................30
3.2.2 顆粒吸附位置測試...............................................32
3.3 黏度量測單元...........................................................33
3.3.1 加工方法與裝配過程............................................33
3.3.2 行程控制與保護電路............................................38
3.4 取樣針筒控制單元...................................................39
3.5 數據讀取與量測範圍...............................................42
3.5.1 數據顯示方式........................................................42
3.5.2 訊號擷取電路........................................................43
3.5.3 量測元件校正........................................................44
3.5.4 量測範圍與參數....................................................45
第四章 結果與討論......................................................48
4.1 鐵顆粒濃度量測結果...............................................48
4.1.1 量測結果訊號波形................................................48
4.1.2 重現性測試以及校正曲線繪製............................49
4.1.3 濃度量測值受黏度干涉測試................................51
4.2 黏度量測結果...........................................................52
4.2.1 量測結果預估理論值............................................52
4.2.2 量測結果訊號波形................................................52
4.2.3 黏度量測結果探討................................................55
4.3 新舊機油實際量測...................................................58
4.3.1 樣品油來源............................................................58
4.3.2 鐵顆粒濃度量測結果............................................58
4.3.3 黏度量測結果........................................................59
第五章 結論.....................................................................60
參考文獻..........................................................................61
參考文獻
1. 邱源成編著, “磨潤學”, 國立中山大學機械與機電工程學系, 2008, p.4, p.202-203
2. K. W. Chambers, M. C. Arneson and C. A. Waggoner, “An on-line ferromagnetic wear debris sensor for machinery condition monitoring and failure detection”, Wear, Vol.128 (1988) 325-337
3. Y. C. Chiou, “Study of wear particle deposition by an improved rotary ferrographic analyzer”, Wear, Vol.146 (1991) 137-147
4. W. W. Seifert, and V. C. Westcott, “A method for the study of wear particles in lubricating oil”, Wear, Vol.21 (1972) 27-42
5. D. Scott, W. W. Seifert and V. C. Westcott, “Ferrography – an advanced design aid for the 80''s”, Wear, Vol.34 (1975) 251-260
6. D. Scott and V. C. Westcott, “Predictive maintenance by ferrography”, Wear, Vol.44 (1977) 173-182
7. D. Scott, P. J. McCullagh and G.W. Campbell, “Condition monitoring of gas turbines – An exploratory investigation of ferrographic trend analysis”, Wear, Vol.49 (1978) 373-389
8. A. L. Price, B. J. Roylance, ”Rotary particle depositor”, Industrial Lubrication and Tribology, Vol.37 (1985) 747-767
9. O. Lloyd and A. F. Cox, “Monitoring debris in turbine generator oil”, Wear, Vol.71 (1981) 79-91
10. Y. Liu, Y. B. Xie, C.J. Yuan and Z. Y. Li,“Research on an on-line ferrograph”, Wear, Vol.153 (1992) 323-330
11. N. K. Myshkin, L. V. Markova, M. S. Semenyuk, H. Kong, H.-G. Han, E.-S. Yoon, “Wear monitoring based on the analysis of lubricant contamination by optical ferroanalyzer”, Wear, Vol.255 (2003) 1270-1275
12. W. F. Kuo, Y. C. Chiou and R. T. Lee, “Fundamental characteristics of wear particle deposition measurement by an improved on-line ferrographic analyzer”, Wear, Vol.208 (1997) 42-49
13. Y. C. Chiou, R. T. Lee and C. Y. Tsai, “An on-line Hall-effect device for monitoring wear particle in oils”, Wear, Vol.223 (1998) 44-49
14. B. J. Hamrock, S. R. Schmid, B. O. Jacobson, “Fundamentals of Fluid Film Lubrication(Second Edition)”, Marcel Dekker, Inc. (2004) 17-18
15. M. M. Khonsari and E. R. Booser, “Applied Tribology:Bearing Design and Lubrication”, John Wiley & Sons, Inc. (2001) 80-82
16. A. Cameron, “The Principles of Lubrication”, Longmans Green (1966)17-46
17. 李冠宗, “潤滑學”, 高立圖書有限公司(2004) 70
18. 川那邊 純一, 竹田 雅明, 片木瞳, 加藤 有子, 喬治 A. 貝拉斯卡, 羅西 L. 梅格, “測量液體黏度之儀器”, 中華民國專利, (1994) 專利號00221672
19. R. T. Lewis, “Method and device including a bed of ferromagnetic fibers and magnetic flux sensor for measuring the amount of magnetic particles on a liquid”, United States Patent, (1987) No.4692698
20. 杜光宗, “圖解電磁學”, 工業科技, 建宏出版社 (1990) 157-171
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔