跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 02:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳東育
研究生(外文):Dong-yu Wu
論文名稱:六足機器人形態因素對其運動穩定性之影響
論文名稱(外文):Effects of Morphological Factors of Hexapod Robots on Locomotion Stability
指導教授:何應勤
指導教授(外文):Innchyn Her
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:110
中文關鍵詞:穩定極限誤差極限對稱步態異相步態偏移模型
外文關鍵詞:Metachronal gaitSymmetric gaitError marginStability marginOffset model
相關次數:
  • 被引用被引用:6
  • 點閱點閱:403
  • 評分評分:
  • 下載下載:77
  • 收藏至我的研究室書目清單書目收藏:2
本文提出六足機器人的偏移模型,在一般模型中加入偏移量D值,探討改變機器人形態對其使用不同步態行走各方向時的穩定性之影響,文中以穩定極限(Stability Margin)和誤差極限(Error Margin)作為機器人移動時穩定性的參考基準,判別機器人移動時的穩定性高低。文中探討了兩種步態朝各方向行走的穩定性,分別為人工編排的對稱步態與自然生物的異相步態,編排其朝各方向行走的步態循環後,分析兩種步態沿各方向行走時的穩定性受偏移量D值變化之影響,並探討運用這兩種步態朝不同方向行走時的適用性與穩定性優劣。
本文的研究結果發現增加偏移量D值可以提高使用對稱步態朝X方向與斜向行走的穩定度,對於使用異相步態行走則幫助較小,並且發現此構型之機器人使用對稱步態行走時,其朝Y方向移動時的穩定度較高,而使用異相步態則是朝X方向移動時的穩定性較高。
This thesis studies the effects of morphological factors of hexapod robots on their locomotion stability. In particular, an offset model for such robots is proposed. The stability margin as well as the error margin are used to indicate the stability of the hexapod robot, as it walks with different gaits in arbitrary directions. Two hexapod gaits are compared, which are the symmetric gait and the metachronal gait. The former is an artificial gait and the latter, on the contrary, is a natural gait which can be observed in many multiped animals.
As we investigate advantages and disadvantages of the two gaits, we find that the stability of a hexapod robot can be enhanced by increasing the offset value. This is particularly true for a robot moving in the X and oblique directions with a symmetrical gait. However, altering the offset is less useful for metachronal gaits. In general, a hexapod robot moves most stably in the Y direction with a symmetrical gait, whereas it is most stable in the X direction with a metachronal gait.
目錄...............................................................Ⅰ
圖目錄.............................................................Ⅴ
表目錄.............................................................Ⅹ
摘要............................................................ ⅩⅠ
ABSTRACT....................................................... ⅩⅡ
第一章 緒論.........................................................1
1.1 文獻回顧.....................................................1
1.1.1 六足機器人的人工步態....................................1
1.1.2 六足生物步態............................................1
1.1.3 穩定極限Sm(Stability Margin)...............................3
1.1.4 容錯步態(Fault Tolerant Gait)與誤差極限 Em(Error Margin).......4
1.2 研究動機與目的...............................................6
1.3 本文的基本架構...............................................7
第二章 偏移模型使用對稱步態朝X方向行走…...........................8
2.1 一般模型與偏移模型...........................................8
2.2 編排步態.....................................................9
2.3穩定極限Sm(Stability Margin)...................................10
2.3.1 穩定極限的定義.........................................10
2.3.2 計算方法...............................................11
2.3.3 範例...................................................14
2.3.4 P、Q、U與D值改變對於模型穩定極限的影響..............15
2.4誤差極限Em(Error Margin)......................................17
2.4.1 誤差極限的定義.........................................17
2.4.2 計算方法...............................................17
2.4.3 範例...................................................19
2.4.4.. P、Q、U各值改變對於模型誤差極限的影響.................20
2.5偏移與一般模型之穩定性比較..................................21
2.5.1兩模型穩定性比較之限制條件.............................21
2.5.2偏移與一般模型的穩定極限...............................21
2.5.3偏移與一般模型的誤差極限...............................23
2.6 本章小結....................................................26
第三章 偏移模型使用對稱步態朝Y軸方向行走..........................27
3.1 編排步態....................................................28
3.2穩定極限Sm(Stability Margin)...................................28
3.2.1 穩定極限的計算.........................................28
3.2.2 範例...................................................31
3.2.3 P、Q、U與D值改變對於模型穩定極限的影響..............32
3.3誤差極限Em(Error Margin)......................................34
3.3.1 誤差極限的計算.........................................34
3.3.2 範例...................................................36
3.3.3.. P、Q、U各值改變對於模型誤差極限的影響.................37
3.4偏移與一般模型之穩定性比較..................................38
3.4.1偏移與一般模型的穩定極限................................38
3.4.2偏移與一般模型的誤差極限................................39
3.5..偏移模型使用對稱步態朝兩軸方向行走之穩定性比較..............41
3.5 本章小結....................................................43
第四章 偏移模型使用對稱步態斜向行走................................44
4.1 編排步態....................................................44
4.2 機器人斜行的角度與跨幅的計算................................45
4.3穩定極限Sm(Stability margin)...................................46
4.3.1...斜行角度 的穩定極限.......................46
4.3.2 .範例...................................................49
4.3.3..斜行角度 的穩定極限.........................50
4.3.4 .範例...................................................53
4.3.5...D值改變對於模型穩定極限的影響.........................54
4.3.6...偏移模型與一般模型斜行的穩定極限比較...................55
4.4誤差極限Em(Error margin).....................................56
4.4.1...斜行角度 的誤差極限.......................56
4.4.2 .範例...................................................58
4.4.3...斜行角度 的誤差極限........................59
4.4.4 .範例...................................................61
4.4.5...偏移模型與一般模型斜行的誤差極限比較...................62
4.5相同跨福不同斜行角度之穩定性比較............................63
4.5.1 .跨幅相同時不同的斜行角度之穩定極限比較.................63
4.5.2 .跨幅相同時不同的斜行角度之誤差極限比較.................64
4.6..本章小結....................................................65
4.7..對稱步態各章小結統整........................................65
第五章 偏移模型使用異相步態行走....................................67
5.1 本章研究重點................................................67
5.2運用異相步態朝X軸方向行走..................................67
5.2.1 編排步態...............................................67
5.2.2 穩定極限與誤差極限.....................................69
5.2.3 P、Q、U與D值變化對穩定度之影響......................72
5.2.4..偏移與一般模型之穩定性比較.............................75
5.3運用異相步態朝Y軸方向行走..................................76
5.3.1 編排步態...............................................76
5.3.2 穩定極限與誤差極限.....................................77
5.3.3 P、Q、U與D值變化對穩定度之影響......................81
5.3.4..偏移與一般模型之穩定性比較.............................84
5.4 異相與對稱步態的比較項目....................................85
5.4.1..使用異相步態朝X軸與Y軸行走之比較.....................85
5.4.2 使用異相步態與對稱步態朝X軸行走之比較.................86
5.4.3 用異相步態與對稱步態朝Y軸行走之比較...................87
5.5 本章小結....................................................89
第六章 結論與建議..................................................90
參考文獻...........................................................92
[1] Bessonov, A. P., and Umnov, N. V., 1973, “The Analysis of Gaits in Six-legged Vehicle According to Their Static Stability,” Proc. Symp. Theory Practice Robots, Udine, Italy, pp. 1–9.
[2] McGhee, R. B., and Iswandhi, G. I., 1979, “Adaptive Locomotion of a Multilegged Robot over Rough Terrain,” IEEE Trans. Systems, Man, and Cybernetics, vol. SMC-9, No.4, Apr., pp. 176-182.
[3] Ozguner, F., Tsai, S. J., and McGhee, R. B., 1984, “An Approach to the Use of
Terrain-preview Information in Rough Terrain Locomotion by a Hexapod Walking Machine,” Int. J. Robot. Res. 3(2), pp. 134-146.
[4] Yang, J. M., and Kim, J. H., 1998, “Fault-tolerant Locomotion of the Hexapod Robot,” IEEE Trans. Syst. Man Cybern. B 28, pp. 109–116.
[5] Wilson, D. M., 1966, ”Insect Walking,” Annual Review of Entomology 11, pp. 103-122.
[6] Frantsevicha, L. I., and Cruse, H., 2005, “Leg Coordination During Turning on an Extremely Narrowsubstrate in a Bug, Mesocerus marginatus (Heteroptera,
Coreidae),” Journal of Insect Physiology 51, pp. 1092–1104.
[7] Jeck, T., and Cruse, H., 2007, “Walking in Aretaon asperrimus,” Journal of Insect Physiology 53, pp. 724–733.
[8] Sleinis, S., Silvey, G. E., 1980, “Locomotion in a Forward Walking Crab,” Journal of Comparative Physiology A 136 (4), pp. 301-312.
[9] Schreiner, J.N., 2004, ”Adaptations by the Locomotor Systems of Terrestial and
Amphibious Crabs Walking Freely on Land and Underwater.” Master thesis, Louisiana State University.

[10] McGhee, R. B., and Frank, A. A., 1968, “On the Stability Properties of
Quadruped Creeping Gaits,” Jourmal of Mathematical Biosciences, pp. 331-351.
[11] Song, S. M., and Waldron, K. J., 1987, “An Analytical Approach for Gait Study and Its Applications on Wave Gaits,” Int. J. Robot. Res., vol. 6, no. 2, pp. 60-71.
[12] Chu, S. K. K., and Pang, G. K. H, 2002, “ Comparsion between Different Model of Hexapod Robot in Fault Tolerant Gait,” IEEE Trans. Syst., Man, Cybern., A, Vol. 32, No. 6.
[13] 劉力維,2009,真「蟹形」自然及人工步態之討論與比較,碩士論文,國立中山大學機械與機電研究所。
[14] Bowling, A., 2006, “Dynamic Performance, Mobility, and Agility of Multi-legged Robots,” ASME Journal of Dynamic Systems, Measurement, and Control, 128(4), pp. 765-777.
[15] Clark, J. E., 2004, “Design, Simulation, and Stability of a Hexapedal Running Robot.” Ph.D. thesis, Stanford University.
[16] Ferrell, C., 1995, “A Comparison of Three Insect-inspired Locomotion
Controllers,” Robotics and Autonomous Systems, pp. 135-159.
[17] Kugushev, E. I., and Jaroshevskij, V. S., 1975, “Problems of Selecting a Gait for an Integrated Locomotion Robot,” Proc.4th Int. Conf. Artificial Intelligence, Tbilisi, Georgian SSR, USSR, pp. 789–793.
[18] Parker, G. B., and Mills, J. W., 1998, “Metachronal Wave Gait Generation for Hexapod Robots,” Department of Computer Science, Indiana University.
[19] Inagaki, K., 1997, “Gait Study for Hexapod Walking with Disabled Leg,”
International Conference on Intelligent Robots and Systems, 1, pp. 408-413.
[20] Yang, J. M., and Kim, J. H., 1998, “A Strategy of Optimal Fault Tolerant Gait for the Hexapod Robot in Crab Walking.” ICRA , pp. 1695-1700.

[21] Yang, J. M., and Kim, J. H., 1999, “Optimal Fault Tolerant Gait Sequence of the Hexapod Robot with Overlapping Reachable Areas and Crab Walking,” IEEE Trans. Syst. Man Cybern. A 29, pp. 224–235.
[22] Yang, J. M., and Kim, J. H., 2000, ”A Fault Tolerant Gait for a Hexapod Robot over Uneven Terrain,” IEEE Transactions on Systems, Man, and Cybernetics B30(1), pp. 172-180.
[23] Yang, J. M., and Kim, J. H., 2005, “Gait Synthesis for Hexapod Robots with a Locked Joint Failure,” Robotica 23(6), pp. 701-708.
[24] Yang, J. M., 2005, “Tripod Ggaits for Fault Tolerance of Hexapod Walking Machines with a Locked Joint Failure,” Jounal of Robotics and Autonomous Systems, Vol.25, pp. 180-189.
[25] Yang, J. M., 2006, “Kinematic Constraints on Fault-tolerant Gaits for a Locked Joint Failure,” Journal of Intelligent and Robotic Systems 45(4), pp. 323-342.
[26] Spenko, M., Haynes, G., Saunders, J., Cutkosky, M., Rizzi, A., Full, R., and Koditschek, D., 2008, “Biologically Inspired Climbing with a Hexapedal Robot,” Journal of Field Robotics, vol. 25, pp. 223–242.
[27] Pfeiffer, F., Weidemann, H. J., and Danowski, P., 1991. “Dynamics of the Walking Stick Insect,” IEEE Control Systems Magazine, pp. 9-13.
[28] Preumont, A., Alexandre, P., and Ghuys, D., 1991, “Gait Analysis and
Implementation of a Six Leg Walking Machine,” Advanced Robotic, pp. 941-945.
[29] Nagy, P. V., Desa, S., and Whittaker, W. L., 1994, ”Energy Based Stability
Measures for Reliable Locomotion of Statically Stable Walkers: Theory and
application,” Int. J. Robot. Res.,vol. 13, no. 3, pp. 272–287.


[30] Schroer, R. T., Boggess, M., Bachmann, R. J., Quinn, R. D., and Ritzmann R. E., 2004, “Comparing Cockroach and Whegs Robot Body Motions,” IEEE Conference on Robotics and Automation, 4, pp. 3288-3293.
[31] Song, S. M., and Choi, B. S., 1990, “The Optimally Stable Ranges of 2n-legged Wave Gaits,” IEEE Transactions on Systems, Man. And Cybernetics, vol. 20, no. 4, pp. 888-902.
[32] Venkataraman, S. T., 1997, “A Simple Legged Locomotion Gait Model, Robotics and Autonomous Systems,” Vol. 22, pp. 75-85.
[33] Zielinska, T., and Heng, J., 2002, “Development of a Walking Machine: Mechanical Design and Control Problems,” Mechatronics 12, pp. 737-754.
[34] Vidal-Gadea, A. G., Rinehart, M. D., and Belanger, J. H., 2008, “Skeletal Adaptations for Forwards and Sideways Walking in Three Species of Decapod Crustaceans.” Arthropod Struct Dev 37, pp. 95–108.
[35] 蔡崇宣,2008,仿多足機器人足部故障之步態研究,碩士論文,國立中山大學機械與機電工程研究所。
[36] 陳學東,2006,多足步行機器人運動規劃與控制,華中科技大學出版社。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top