跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/27 11:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馬嘉南
研究生(外文):Chia-nan Ma
論文名稱:封閉式放電披覆法之操作條件對鋼表面改質之影響
論文名稱(外文):Effects of operating conditions on the surface modification of steel using a coating method of closed-type electrical discharge
指導教授:李榮宗李榮宗引用關係邱源成
指導教授(外文):Rong-Tsong LeeYuang-Cherng Chiou
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:115
中文關鍵詞:披覆層厚度披覆層之表面覆蓋率放電披覆
外文關鍵詞:electrical discharge coatingthe area covered by the coatingand coating thickness
相關次數:
  • 被引用被引用:3
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用的封閉式表面放電被覆法,可使電極端面與工件之間隙以形成一封閉空間,使放電過程中之粒子、離子與壓力集中於此空間,藉以增加鍍層之披覆速度與品質。實驗中使用黃銅為負極材料、工件SKD11工具鋼為正極材料、在煤油中添加碳化鎢粉末的濃度50g/L為放電加工液。脈衝時間25μs、休止時間500μs,以及通電條件為供應電壓50V~400V、放電披覆時間34秒~284秒、極間間隙50μm~300μm,探討披覆層之厚度成長及品質。
  實驗結果顯示,在供應電壓大於100 V、極間間隙150μm以下、放電被覆時間142秒之條件下,披覆層之表面覆蓋率達90%以上,並且披覆層厚度隨極間間隙與放電披覆時間增加而增加;但當極間間隙大於150μm時,披覆層厚度反而減少。
  尤其,在供應電壓200V、極間間隙100μm、放電被覆時間142秒之條件下,披覆層厚度可達17μm,並且內部氣孔亦最少,硬度可達碳化鎢水準。
  An electrical discharge coating method, which an isolated sleeve is used to form a closed space between the end surface of electrode and the workpiece so that the particles, the ions, and the pressure during the discharge process are concentrated on this space, is employed to increase the coating speed and the quality of the coating. The electrode for the cathode is made of brass, and the workpiece for the anode SKD11. They are immersed in kerosene containing W/C powder with the concentration of 50g/L. The time for the pulse-on is 25μs and that for the pulse-off times 500μs. The growing thickness and the quality of coating layer are investigated under the supply voltage of 50-400V, discharge coating time of 34-284s, and the gap distance of 50-300μm.
  Experimental results show that when the supply voltage is larger than 100V, the gap distance less than 150μm and discharge coating time 142s, the area covered by the coating can achieve more than 90 percent of the total surface area. Moreover, the coating thickness increases with increasing gap distance and discharge coating time, but as the gap distance is larger than 150μm, the coating thickness decreases with increasing gap distance.
  For a special case, under the supply voltage of 200V, the gap distance of 100μm and the discharge coating time of 142s, the coating thickness can achieve about 17μm with little pore in the coating layer. The hardness of the coating layer can almost achieve the level of W/C hardness.
總目錄..................................................................................I
圖目錄................................................................................IV
表目錄.................................................................................X
符號說明............................................................................XI
摘要...................................................................................XII
Abstract............................................................................XIII

第一章 緒論.........................................................................1
1-1 研究動機.......................................................................1
1-2 相關文獻.......................................................................2
1-3 研究目的......................................................................12
第二章 基本理論...............................................................14
2-1 放電加工的原理..........................................................14
2-2 放電形式的分類.........................................................14
2-3 電弧放電之電位分佈結構.........................................19
2-4 放電加工形成機制與操作參數.................................21
2-5 放電加工之操作參數.................................................22
2-6 放電加工之材料移除機制的要因 ............................25
2-7 放電加工之變質層特徵.............................................28
第三章 實驗設備與實驗方法...........................................29
3-1 實驗設備.....................................................................29
3-1-1 動態放電試驗機.....................................................29
3-1-2 循環攪拌系統.........................................................32
3-1-3 實驗訊號量測設備與資料收集分析.....................37
3-2 實驗方法.....................................................................38
3-2-1 實驗材料.................................................................38
3-2-2 試片處理.................................................................41
3-2-3 實驗條件設定.........................................................41
3-2-4 實驗步驟.................................................................42
第四章 結果與討論...........................................................47
4-1 不同操作條件下之表面鍍層覆蓋面積.....................47
4-1-1 鍍層面積覆蓋率之定義.........................................51
4-1-2 最佳鍍層面積覆蓋率之工作區域定義..................57
4-2 硬化層厚度之定義.....................................................60
4-2-1 放電披覆時間對硬化層厚度之影響.....................61
4-2-2 極間間隙對硬化層厚度之影響.............................64
4-2-3 放電披覆時間與極間間隙對總硬化層厚度之影響
..................................................................................67
4-3 不同操作條件對鍍層品質之影響 ...........................73
4-3-1 不同放電披覆時間對鍍層品質之影響................73
4-3-2 不同極間間隙對鍍層品質之影響........................78
4-3-3 不同供應電壓對鍍層品質之影響........................83
4-4 極間間隙對鍍層硬度值與放電披覆力量之關係....87
4-4-1 不同極間間隙下,鍍層硬度值與深度之關係....87
4-4-2 不同極間間隙下,放電披覆力量之比較............90
第五章 結論與未來研究方向..........................................94
1. 齊藤長男, 毛利尚武, 大竹廣定, 吉田敏之:放電加工表面處理, 昭和63年精密工學春季大會學術講演會論文集, G34, pp. 560~561。
2. Chow H.M., Yan B.H., Huang F.Y., Hung T.C., “Study of added powder in kerosene for the micro-slit machiningof titanium alloy using electro-discharge machining”,Journal of Materials Processing Technology, 101 (2000) 95–103。
3. Erden A., Bilgin S., “Role of impurities in electric discharge machining”, Proceedings of 21st International Machine Tool Design and Research Conference,Macmillan, London,1980,345–350。
4. Mohri N., Tsukamoto J., Fujino M., “Surface modification by EDM—an innovation in EDM with semi-conductive electrodes”, Proceedings of Winter Annual Meet ASME, 34 (1988) 21–30。
5. Mohri N., Saito N., Higashi M.A., “A new process of finish machining on free surface by EDM methods”, Annals CIRP, 40 (1991) 207–210。
6. Narumiya H., Mohri N., Saito N., Otake H., Tsnekawa Y., Takawashi T., Kobayashi K., “EDM by powder suspended working fluid”, Proceedings of 9th ISEM, (1989) 5–8。
7. Kobayashi K., Magara T., Ozaki Y., Yatomi T., “The present and future developments of electrical discharge machining”, Proceedings of 2nd International Conference on Die and Mould Technology, Singapore, 1992,35–47。
8. Ming Q.Y., He L.Y., “Powder-suspension dielectric fluid for EDM”, Journal of Materials Processing Technology, 52 (1995) 44–54。
9. Uno Y., Okada A., “Surface generation mechanism in electrical discharge machining with silicon powder mixed fluid”, International Journal of Electrical Machining, 2 (1997) 13–18
10. Okada A., Uno Y., Hirao K., Formation of hard layer by EDM with carbon powder mixed fluid using titanium electrode, Proceedings of 5th International Conference on Progress of Machining Technology, 2000, 464–469
11. Furutani K., Saneto A., Takezawa H., Mohri N., Miyake H., “Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid”, Precision Engineering, 25 (2001) 138–144。
12. Furutani K., Shiraki K., “Deposition of lubricant layer during finishing process by electrical discharge machining with molybdenum disulphide powder suspended in working fluid”, JSME/ASME International Conference on Materials and Processing, 2002, 468–473。
13. 林炎成,“放電加工表面改質與精修效果之研究”,中央大學機械工程研究所博士論文,2001。
14. 蔡憲忠,“銅鉻電極及尿素加工液對放電加工表面改質效果之研究”,中央大學機械工程研究所博士論文,2005。
15. 劉彥孝,“以創新的放電披覆法對鋼表面改質效果之研究”,中山大學機電工程研究所碩士論文,2008。
16. 齊藤長男, 毛利尚武, �琱t好樹, 石黑輝男, 永野浩司:液中放電之表面加工展開 (表面改質), 第3回電氣加工學會全國大會,1993, p.23。
17.齊藤長男, 毛利尚武, 高鷲民生, 古谷政典 合著, 放電加工技術, 日刊工業新聞社出版, 1997, P198。
18. Fukuzawa Y., Kojima Yo, Tani T., Sekiguti E. Mohri N., “Fabrication of surface modification layer on stainless steel by electrical discharge machining”, Materials and Manufacturing Process, 10 (1995) 195–203。
19. Wang Z.L., Fang Y., Wu P.N., Zhao W.S., Cheng K., “Surface modification process by electrical discharge machining with a Ti powder green compact electrode”, Journal of Materials Processing Technology, 129 (2002) 139–142。
20. Simao J., Aspinwall D., El-Menshawy F., Meadows K., “Surface alloying using PM composite electrode materials when electrical discharge texturing hardened AISI D2”, Journal of Materials Processing Technology, 127 (2002) 211–216。
21. Mohri N., Fukusima Y., Fukuzawa Y., Tani T.i, Saito N., “Layer generation process on work-piece in electrical discharge machining”, CIRP Annuals-Manufacturing Technology, 52 (2003) 157–160。
22. 松川公映、佐藤勝紀、後藤昭弘、齋藤長男、毛利尚武,“放電加工硬質披膜之摩擦磨耗特性(第1報)”,, 53(2008) 110–117。
23. 松川公映、佐藤勝紀、後藤昭弘、齋藤長男、毛利尚武,“放電加工硬質披膜の摩擦磨耗特性 (第2報)”, 53(2008) 339–345。
24. 科技用書-“放電加工機活用” ,賴耿陽譯著,齊藤長男監修,復漢出版社,1998。
25. 相川孝作,“電子現象”, 朝倉書店,1967。
26. Wheatcroft E. L. E., “Gaseous electrical conductors”, Oxford: At the Clarendon Press, 1938。
27. 余永平,“線切割放電加工材料之能量性質及其應用”,台灣大學機械工程研究所博士論文,2001。
28. 林忠民,“潤滑金屬表面電蝕機制之基礎研究”,中山大學機械與機電工程研究所博士論文,2003。
29. 木本康雄,“電氣、電子應用精密加工”, 株式會社 ,1982。
30. 劉見成,“氮化鈦/氮化矽複合材料的放電加工及磨耗性質之研究”,成功大學材料科學及工程研究所博士論文,2005。
31. 陳竹南,“放電加工原理與加工技術”,建宏書局,1976。
32. Hughes J.R., ”Bearing wear caused by electric current”, Electric Manufacturing, (1949) 108–111。
33. Kuo W.F., Chiou Y.C., and Lee R.T., “A study on lubrica-tion mechanism and wear scar in sliding circular contacts”, Wear, 201 (1996) 217– 226。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊