(3.236.214.19) 您好!臺灣時間:2021/05/10 03:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡依倫
研究生(外文):Yi-lun Tsai
論文名稱:應用六角格子之光流法
論文名稱(外文):Optical Flow in the Hexagonal Image Framework
指導教授:程啟正程啟正引用關係
指導教授(外文):Chi-Cheng Cheng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:101
中文關鍵詞:六角影像複眼光流視覺伺服
外文關鍵詞:Hexagonal imageCompound eyeOptical flowVisual servo
相關次數:
  • 被引用被引用:1
  • 點閱點閱:123
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在影像追尋中光流法(Optical flow)是常使用的方法之一,其優點在於不需事先得知目標物的特徵,僅藉由亮度資訊之獲得,即可求得物體位移距離,因此適合應用於未知目標物的追尋。而昆蟲由於其獨特的複眼架構,在大自然界儼然成為追尋及捕捉獵物的佼佼者。如果能掌握昆蟲複眼的優勢所在,對於運動目標的追尋應可發揮莫大的提升作用。
然而,傳統的影像資訊乃建構於直角座標系上,與昆蟲複眼的六角架構截然不同。因此本論文目的在於,結合六角的概念與光流技術,探討與傳統直角系統的差異,以期對於昆蟲複眼在影像追尋優勢的背後原因有所初步了解,進而為爾後六角在影像實際應用之可行性奠定基礎。經過對於各種不同特徵影像電腦模擬結果顯示,六角格子之光流法整體而言追尋效果優於傳統直角格子之光流法。
The optical flow has been one of the common approaches for image tracking. Its advantage is that no prior knowledge for image features is required. Since movement information can be obtained based on brightness data only, this method is suitable for tracking tasks of unknown objects. Besides, insects are always masters in chasing and catching preys in the natural world due to their unique compound eye structure. If the edge of the compound eye can be applied to tracking of moving objects, it is highly expected that the tracking performance will be greatly improved.
Conventional images are built on a Cartesian reference system, which is quite different from the hexagonal framework for the compound eye of insects. This thesis explores the distinction of the hexagonal image framework by incorporating the hexagonal concept into the optical flow technology. Consequently, the reason behind why the compound eye is good at tracking moving objects can be revealed. According to simulation results for test images with different features, the hexagonal optical flow method appears to be superior to the traditional optical flow method in the Cartesian reference system.
目錄 I
圖索引 III
表索引 V
摘要 VI
Abstract VII
第一章 緒論 1
1.1 動機與目的 1
1.2 文獻回顧 1
1.3 論文架構 5
第二章 六角座標 6
2.1 對稱六角座標系 6
2.2 影像轉換 7
第三章 光流系統 13
3.1 光流及影像流之定義 13
3.2 以一階最小平方法求解光流法 14
3.3 以六角格子概念求解光流法 20
第四章 模擬 28
4.1 模擬流程 28
4.2 模擬結果 33
第五章 結論與未來展望 45
參考文獻 48
附錄A 六角光流之簡化解法 50
附錄B 微分區域選取 57
附錄C 模擬結果之數據 64
[1]M. Elwell and L. Wen, “The power of compound eyes,” Optics & Photonics News, 1991, pp. 58-59.
[2]J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-Optics technology,” Applied Optics, vol. 43, 2004, pp. 4303-4310.
[3]Ki-Hun Jeong, Jaeyoun Kim, and L. Lee, “Polymeric synthesis of biomimetic artificial compound eyes,” Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS ''05. The 13th International Conference on, 2005, pp. 1110-1113 Vol. 2.
[4]K. Jeong, J. Kim, and L.P. Lee, “Biologically inspired artificial compound eyes,” Science, vol. 312, Apr. 2006, pp. 557-561.
[5]L.P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science, vol. 310, Nov. 2005, pp. 1148-1150.
[6]M. Golay, “Hexagonal parallel pattern transformations,” Computers, IEEE Transactions on, vol. C-18, 1969, pp. 733-740.
[7]E.S. Deutsch, “Thinning algorithms on rectangular, hexagonal, and triangular arrays,” Commun. ACM, vol. 15, 1972, pp. 827-837.
[8]R. Mersereau, “The processing of hexagonally sampled two-dimensional signals,” Proceedings of the IEEE, vol. 67, 1979, pp. 930-949.
[9]L. Middleton and J. Sivaswamy, “Edge detection in a hexagonal-image processing framework,” Image and Vision Computing, vol. 19, 2001, pp. 1071-1081.
[10]A. Bainbridge-Smith and R.G. Lane, “Determining optical flow using a differential method,” Image and Vision Computing, vol. 15, Jan. 1997, pp. 11-22.
[11]R.Y. Wong and E.L. Hall, “Sequential hierarchical scene matching,” IEEE Trans. Comput., vol. 27, 1978, pp. 359-366.
[12]E.H. Adelson and J.R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. OPT. SOC. AM. A, vol. 2, 1985, pp. 284--299.
[13]B.K.P. Horn and B.G. Schunck, “Determining optical flow,” Shape recovery, Jones and Bartlett Publishers, Inc., 1992, pp. 389-407.
[14]B.D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” 1981, pp. 674--679.
[15]Xiangjian He and Wenjing Jia, “Hexagonal structure for intelligent vision,” Information and Communication Technologies, 2005. ICICT 2005. First International Conference on, 2005, pp. 52-64.
[16]I. Her, “A symmetrical coordinate frame on the hexagonal grid for computer graphics and vision,” Journal of Mechanical Design, vol. 115, 1993, pp. 447-449.
[17]G. Wolberg, Digital Image Warping, Wiley-IEEE Computer Society Pr, 1990.
[18]A.B. Watson, Digital Images and Human Vision, The MIT Press, 1993.
[19]何坤鑫,以光流為基礎之影像追尋,國立中山大學機械工程研究所碩士論文,民國九十年六月。
[20]景雅新,光流技術在移動物體影像追尋上之應用,國立中山大學機械與機電工程學系碩士論文,民國九十二年六月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔