# 臺灣博碩士論文加值系統

(44.200.40.195) 您好！臺灣時間：2022/06/30 03:34

:::

### 詳目顯示

:

• 被引用:2
• 點閱:287
• 評分:
• 下載:0
• 書目收藏:0
 在目前，大部份的文獻都僅討論使用一般解法(MFS)處理2維問題，為了使一般解法(MFS)有更好的效力，本篇將拓展至處理3維問題。當3維的一般解基底Φ(x,y)=1/(4π||x-y||), x,y∈R^3已知，source點的位置在實際計算中便顯得十分重要。在本篇論文中，我們選定柱形的解域，source點佈於比解域大的柱或球體上。最後將有些數值結果與總結一些有用的結論，而理論分析在將來完成。
 For the method of fundamental solutions(MFS), many reports dealwith 2D problems. Since the MFS is more advantageous for 3Dproblems, this thesis is devoted to Laplace''s equation in 3Dproblems. Since the fundamental solutions(FS)Φ(x,y)=1/(4π||x-y||), x,y∈R^3are known, the location of source points is important in realcomputation. In this thesis, we choose a cylinder as the solutiondomain, and the source points on larger cylinders and spheres.Numerical results are reported, to draw some useful conclusions.The theoretical analysis will be explored in the future.
 Contents1 Introduction 42 Algorithms of Method of Fundamental Solutions 63 Particular Solutions of Laplace’s Equation in Cylindrical Coordinates 94 Numerical Results 135 Conclusions 19
 [1] Atkinson, K. E., The Numerical solution of Integral Equations of the Second Kind, CambridgeUniversity Press, 1997.[2] Alves, C. J. S. and Leitao, V. M. A., Crack analysis using an enriched MFS domain decompositiontechniques, Engineering Analysis with Boundary Analysis, Vol. 30, pp. 160–166, 2006.[3] Alves, C. J. S. and Valtchev, S. S., Comparison between meshfree and boundary element mehtodsapplied to BVP’s in domains with corners, Proceedings of the ECCM’06, LNEC, Lisbon, Portugal,Eds. C. A. Mota Soares et.al., Springer, 2006.[4] Babuska, I. and Aziz, A. K., Survey lectures on the mathematical foundations of the finite elementmethod in The Mathematical Foundations of the Finite Element Method with Applica-tions to Partial Differential Equations (Ed. by A. K. Aziz, pp. 3 - 359, Academic Preess, NewYork, 1972.[5] Betcke, T. and Trefethen, L. N.,Reviving the method of particular solutions , SIAM Review, Vol. 47,pp. 469-491, 2005[6] Bogomolny, A., Fundamental solutions method for elliptic boundary value problems, SIAM J. Numer.Anal., Vol. 22, pp. 644–669, 1985.[7] Christiansen, S., On Kupradze’s functional equations for plane harmonic problems, In R. P. Gilbertand R. Weinacht(Eds): Function Theoretic Method in Differential Equations, London, ResearchNotes in Mathematics, Vol. 8, pp. 205–243, 1976.[8] Christiansen, S., Condition number of matrices derived from two classes of integral equations, Math.Meth. Appl. Sci., Vol. 3, pp. 364–392, 1981.[9] Christiansen, S., On the two method for elimination of non-unigue solutions of an integral equationof an integral equation with logarithmic kernel, Applicable Analysis, Vol. 13, pp. 1–18, 1982.[10] Chan, F. C. and Foulser, D. E., Effectively will-condition linear systems, SIAM. J. Stat. Comput.,Vol 9, pp. 963–969, 1988.[11] Comodi, M. I. and Mathon, R., A boundary approximation method for fourth order problems, MathematicalModels and Methods in Applied Sciences, Vol. 1, pp. 437 – 445, 1991.[12] Christiansen, S. and Hansen, P. C., The effective condition number applied to error analysis ofcertain boundary collocation method, J. of Comp. and Applied Math., Vol. 54, pp. 15–36, 1994.[13] Christiansen, S. and Saranen, J., The conditioning of some numerical methods for first kind boundaryintegral equations, Vol. 67, pp. 43–58, 1996.[14] Chen, J. T., Kuo, S. R., Chen, K. H. and Cheng, Y. C., Comments on “ Vibration analysis ofarbitrary shaped membranes using non-dimensional dynamic influence functions”, J. of Sound andVibration, pp. 156–171, 2000.[15] Chen, J. T. and Chiu, Y. P., On the pseudo-differential operators is the dual boundary inteqralequations using degenerate kernels and circulants, Engineering Analysis with Boundary Elements,Vol. 26, pp. 41–53, 2002.[16] Chen, C. S., Cho, H. A. and Golberg, M. A., Some comments on the ill-conditioning of the methodof fundamental solutions, preprint, Department of Mathematics, University of Southern Mississippi,Hattiesburg, MS 39406, USA, 2005.[17] Chen, C. S., Hon, Y. C. and Schaback, R. A., Scientific Computing with Radial Basis Func-tions, preprint, Department of Mathematics, University of Southern Mississippi, Hattiesburg, MS39406, USA, 2005.[18] Davis, P. J., Circulant Matrices, John Wiley & Sons, New York, 1979.[19] Davis, P. J. and Rabinowitz, P., Methods of Numerical Integration (Sec. Ed.), AcademicPress, pp. 315, 1984.[20] Fairweather, G. and Karageorghis. A., The method of fundamental solurions for elliptic boundaryvalue problems , Advances in Computional Mathematics, Vol. 9, pp. 69-95, 1998.[21] Gradsheyan, I. S. and Ryzhik, Z. M., Tables of Integrals, Series and Products, Academic Press,New York, 1965.[22] Huang, H. T, Li, Z. C. and Yan N., New error estimates of Adini’s elements for Poisson’s equation,Applied Numer. Math., Vol. 50, pp. 49 – 74, 2004.[23] Huang, H. T, Li, Z. C. and Huang, H. T., Stability analysis for the first kind boundary integralequations by methanical quadratare methods, Technical report, Department of Applied Mathematics,National Sun Yet-sen University, Kaohsiung, 2006.[24] Kupradze, V. D., Pontential methods in elasticity, in J. N. Sneddon and R. Hill (Eds), Progress inSolid Mechanics, Vol. III, Amsterdam, pp. 1-259, 1963.[25] Kitagawa, T., Asymototic stability of the fundamental solution methods, J. Comp. and Appl. Math.,vol. 38, pp. 263 – 269, 1991.[26] Karageorghis, A., Modified methods of fundamental solutions for harmonic and bi-harmonic problemswith boundary singularities, Numer. Meth. for PDE, Vol. 8, pp. 1–18, 1992.[27] Katsurada, M. and Okamoto, H., The collocation points of the method of fundamental solutions forthe potential problem, Computers Math. Applics, Vol. 31, pp. 123–137, 1996.[28] Kuo, S. R., Chen, T. J. and Huang, C. X., Analytical study and numerical experiments for trueand spurious eigensolutions of a circular cavity using the real-part deal BEM, Inter. J. for Numer.Methods in Engrg. Applics, Vol. 84, pp. 1401–1422, 2000.[29] Karageorghis, A., The method of fundamental solutions for the calculation of the eigenvalues of theHelmoholtz equation, Applied Mathematics Letter, Vol. 14, pp. 837–842, 2001.[30] van Loan, C. F., Generalizing the singular value decomposition, SIAM. J. Numer. Anal., Vol. 13, pp.76–83, 1976.[31] Liem, C. B., L‥u, T. and Shih, T. M., the Splitting Extrapolation Method, a New Techniquein Numerical Solution of Mathidimensional problems, World Scientfic, Singapore, 1995.[32] Li, Xin, Convergence of the method of fundamental solutions for solving the boundary value problemof modified Helmholtz equation, Applied Mathematics and Computation, Vol.159, pp. 113 – 125,2004.[33] Li, Xin, On convergence of the method of findamental solutions for solving the Dirichlet problem ofPoisson’s equation, Advances in Computational Mathematics, Vol. 23, pp. 265 – 277, 2005.[34] Li, Xin, Convergence of the method of fundamental solutions for Poisson’s equation on the unitsphere, Advances in Computational Mathematics, Vol. 28, 269 – 282, 2008.[35] Li, Z. C., Combined Methods for Elliptic Equations with Singularties, Interface andInfinities, Academic Publishers, Dordrecht, Boston and London, 1998.[36] Lu, T. T., Hu, H. Y. and Li, Z. C., Highly accurate solutions of Motz’s and cracked-beam problems,Engineering Analysis with Boundary Elements, Vol. 28, pp. 1378-1403, 2004.[37] Li, Z. C., Huang, H. T. and Chen, J. T., Effective condition number for collocation Trefftz method,Technical report, Department of Applied Mathematics, National Sun Yet-sen University, Kaohsiung,2005.[38] Li, Z. C., Lu, T. T., Hu, H. T. and Cheng, A. H.-D., Trefftz and Collocation Methods, MIT,Southampton, 2008.[39] Li, Z. C. and Huang, H. T., Effective condition number for numerical partial differential equations,Numerical Linear Algebra with Applications, Vol. 15, pp. 575 – 594, 2008.[40] Li, Z. C., Chien, C. S. and Huang, H. T., Effective condition number for finite difference method, J.Comp. and Appl. Math., Vol. 198, pp. 208 - 235, 2007.[41] Li, Z. C., Combinations of Method of fundamental solutions for Laplace’s equation with singularities,Enguneering Analysis with Boundary Elements, Vol. 32, pp.856 – 869, 2008.[42] Mathon, R. and Johnston, R. L., The approximate solution of elliptic boundary-value problems byfundamental solutions, SIAM J. Numer. Anal., Vol. 14, pp. 638–650, 1977.[43] Mey, G. De., Integral equations for potential problems with the source function not located on theboundary, Computer & Structure, Vol. 8, pp. 113–115, 1978.[44] Pinsky, Mark A., Partial Differential Equations and Boubdary-Value Problems with Applications,3rd, McGraw-Hill, pp. 171-233, 1998.[45] Oden, J. T., and Reddy, J. N., An Introduction to the Mathematiced Theory of FiniteElements, John Wiley & Sons, New Yark, 1976.[46] Ramachandran, P. A., Method of fundamental solutions: Singular value decomposition analysis,Commum. Method in Engrg., Vol. 18, pp. 789–801, 2002.[47] Sidi, A., Practical Etropolution Methods, Theory and Applications, Cambridge UniversityPress, 2003.[48] Schaback, R., Adaptive numerical solution of MFS systems , a plenary talk at the first Inter. Workshopon the Method of Fundamental Solutions(MFS2007), Ayia Napa, Cyprus, June 11-13, 2007.[49] Trefftz, E., Konvergenz und Ritz’schen Verfahren, Proc. 2nd Int. Cong. Appl. Mech., Znrch, pp.131–137, 1926.[50] William, E. B. and DiPrima, R. C. Elementary differential equations and boundary value prob-lems,5ed , Wiley, pp. 111-116, 1992.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 Trefftz法應用於三維穩態地下水滲流問題之研究 2 新誤差評估技術應用於正規化無網格法及無因次動力影響函數法求解霍姆荷茲問題

 無相關期刊

 1 植基於晶格且支援動態成員管理之可搜尋式屬性加密機制 2 基於5G NR之通道資訊回傳及定位研究 3 女警養成教育與任務分派的性別建制分析 4 資訊及後疫情時代下照明產業的轉型策略 5 以活性汙泥法處理塑化廢水中的化學需氧量與懸浮固體之計量學應用 6 不銹鋼製程廢水處理之污泥特性探討之研究 7 台灣紡織產業的起源至擴張:以儒鴻為例 8 社交媒體和中小企業：探討新冠病毒對中小企業社交媒體使用率的影響 9 荷蘭與台灣的製造業外籍勞工之比較性分析 10 全被動式微型直接甲醇燃料電池組之甲醇橫滲現象研究 11 儲存槽流場設計對太陽能熱水系統效率提升之研究 12 二流體噴嘴之噴霧冷卻在不同氣液比及鍍膜表面之散熱性能分析 13 具多層迴圈展開之指令分析器 14 使用六埠技術之自我注入鎖定雷達研究 15 校園霸凌之防制與能力培訓探究：從臺灣教師之觀點

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室