(3.235.245.219) 您好!臺灣時間:2021/05/10 02:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李介誠
研究生(外文):Chieh-cheng Li
論文名稱:托普立茲算子與λ-托普立茲算子之比較
論文名稱(外文):A simple comparison between the Toeplitz andthe λ -Toeplitz operators
指導教授:何宗軒何宗軒引用關係
指導教授(外文):Mark C. Ho
學位類別:碩士
校院名稱:國立中山大學
系所名稱:應用數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:17
中文關鍵詞:算子
外文關鍵詞:Toeplitz operator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
給定 λ 為單位閉圓裡的複數,H是可分離的希爾伯特空間,且 ε={e_n:n=0,1,2,…} 為H一單範正交基底。在H裡,一有界算子T若滿足< Te_{m+1},Te_{n+1} >=λ< Te_m,Te_n > ( <•,•> 為H裡的內積 ),則稱T為 λ-托普立茲算子。這主題源自於最近研究一個特例算子方程式S*AS = λA + B, 這裡的S是在H裡的shift, 對於在l^2(Z)裡找一有界矩陣 (a_{ij})滿足以下方程式扮演著不可或缺的角色
a_{2i,2j} = p_{ij} + aa_{ij}
a_{2i,2j−1} = q_{ij} + ba_{ij}
a_{2i−1,2j} = v_{ij} + ca_{ij}
a_{2i−1,2j−1} = w_{ij} + da_{ij}
所有 i, j ∈ Z, (p_{ij}), (q_{ij}), (v_{ij}), (w_{ij}) 皆為在 l^2(Z) 裡的有界矩陣且a, b, c, d ∈C。
當S是一unilateral shift,我們可以精確的得到所熟知的托普立茲算子為S*AS = A的解。這篇文章主要是討論 λ-托普立茲算子的一些基本性質,像是有界性和緊致性,並且比較相關結果與托普立茲算子差異。
Let λ be a complex number in the closed unit disc, and H be a separable Hilbert space with the orthonormal basis, say, ε={e_n:n=0,1,2,…}. A bounded operator T on H is called a λ-Toeplitz operator if < Te_{m+1},Te_{n+1} >=λ< Te_m,Te_n > (where <•,•> is the inner product on H).
The subject arises just recently from a special case of the operator equation S*AS = λA + B, where S is a shift on H, which plays an essential role in finding bounded matrix (a_{ij}) on l^2(Z) that solves the system of equations
a_{2i,2j} = p_{ij} + aa_{ij}
a_{2i,2j−1} = q_{ij} + ba_{ij}
a_{2i−1,2j} = v_{ij} + ca_{ij}
a_{2i−1,2j−1} = w_{ij} + da_{ij}
for all i, j ∈ Z, where (p_{ij}), (q_{ij}), (v_{ij}), (w_{ij}) are bounded matrices on l^2(Z) and a, b, c, d ∈C.
It is also clear that the well-known Toeplitz operators are precisely the solutions of S*AS = A, when S is the unilateral shift. The purpose of this paper is to discuss some basic topics, such as boundedness and compactness, of the λ-Toeplitz operators, and study the similarities and the differences with the corresponding results for the Toeplitz operators.
1. Introduction 3
2. Boundedness of T_{λ,φ} 6
3. Compactness of T_{λ,φ} 10
[1] A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. reine angew. Math., 231, 1963, pp.89-102.
[2] M. D. Contreras and A. G. Hern′andaz-D′ıaz, Weighted composition operators between different Hardy spaces, Integral Equations and Operator Theory, 46, 2003, pp.165-188.
[3] M. D. Contreras and A. G. Hern′andaz-D′ıaz, Weighted composition operators on space of functions with derivatives in a Hardy space, J. Operator Theory, 52, 2004, pp.173-184.
[4] C. C. Cowen and E. Ko, Weighted composition operators on H^2, Preprint.
[5] G. Gunatillake, Spectrum of a compact weighted composition operator, Proc. AMS, 135, no. 2, 2007, pp.461-467.
[6] G. Gunatillake, Compact weighted composition operators on the Hardy space, Proc. AMS, 136, no. 8, 2008, pp.2895-2899.
[7] M. C. Ho, Adjoints of slant Toeplitz operators II, Integral Equations and Operator Theory, 41, 2001, pp.179-188.
[8] M. C. Ho and M. M. Wong, Operators that commute with slant Toeplitz operators, Applied Math. Research eXpress, 2008, Article ID abn003, 20 pages, doi:10.1093/amrx/abn003.
[9] M. C. Ho and C. M. Hsu, On infinite matrices on l^2(Z) generated dyadically by a 2 × 2 block, submitted.
[10] C. M. Hsu, On infinite matrices whose entries satisfying certain dyadic recurrent formula, master thesis, NSYSU, 2007.
[11] B. D. MacCluer and R. Zhao, Essential norms of weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math., 33, no. 4, 2003.
[12] S. Ohno, Weighted composition operators between H^1 and the Bloch space, Taiwanese J.
Math., 5, no. 3, 2001, pp.555-563.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔