跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/10 11:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡宗彣
研究生(外文):Chung-wen Tsai
論文名稱:算子代數上的線性保正交性映射
論文名稱(外文):Linear Orthogonality Preservers of Operator Algebras
指導教授:黃毅青
指導教授(外文):Ngai-Ching Wong
學位類別:博士
校院名稱:國立中山大學
系所名稱:應用數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:44
中文關鍵詞:保正交性映射標準算子代數算子代數不相交結構
外文關鍵詞:operator algebrasorthogonality preserversstandard operator algebrasdisjointness structuresorthogonality structures
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
Banach-Stone定理(Kadison定理)說兩個交換(一般)C*-代數在 C*-代數(JB*-代數)意義下是同構的若且唯若它們 Banach 空間意義下是同構的。在此,我們感興趣的是利用不同的結構來決定一個 C*-代數。我們想要研究 C*-代數的不相交結構並考察這個結構是否可用來決定一個 C*-代數。
我們至少可以定義四種不同的不相交結構:零乘積、值域正交性、定義域正交性和雙重正交性。在本篇論文中,我們會先研究標準算子代數上的不相交結構。然後將這些結果推廣到有連續跡的 C*-代數上。
The Banach-Stone Theorem (respectly, Kadison Theorem) says that two abelian (respectively, general) C*-algebras are isomorphic as C*-algebras (respectively, JB*-algebras) if and only if they are isomorphic as Banach spaces. We are interested in using different structures to determine C*-algebras. Here, we would like to study the disjointness structures of C*-algebras and investigate if it suffices to determine C*-algebras.
There are at least four versions of disjointness structures: zero product, range orthogonality, domain orthogonality and doubly orthogonality. In this thesis, we first study these disjointness structures in the case of standard operator algebras. Then we extend these results to general C*-algebras, namely, C*-algebras with continuous trace.
Chapter 1: Introduction 1
Chapter 2: Notations and Preliminaries 3
2.1 Disjointness structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Continuous fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 CCR C*-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Chapter 3: Separating linear maps of continuous fields of Banach spaces 12
3.1 Separating maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Biseparating maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Chapter 4: Linear orthogonality preservers of standard operator algebras
19
4.1 Zero product preservers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Range and domain orthogonality preservers . . . . . . . . . . . . . . . . . . 21
4.3 Range-domain and domain-range orthogonality preservers . . . . . . . . . . 23
4.4 Doubly orthogonality preservers . . . . . . . . . . . . . . . . . . . . . . . . 25
Chapter 5: Linear orthogonality preservers of C*-algebras with continuous
traces 27
5.1 Zero product preservers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Singly-orthogonality preservers . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Unsolved problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
[1] C. A. Akemann and G. K. Pedersen, Ideal perturbations of elements in C*-algebras,
Math. Scand. 41 (1977), 117–139.
[2] J. Araujo and K. Jarosz, Automatic continuity of biseparating maps, Studia Math., 155
(2003), 231–239.
[3] J. Araujo and K. Jarosz, Biseparating maps between operator algebras, J. Math. Anal.
Appl., 282 (2003), 48–55.
[4] J. T. Chan, Operators with the disjoint support property, J. Operator Theory 24 (1990),
383–391.
[5] M. A. Chebotar, W.-F. Ke, P.-H. Lee and N.-C. Wong, Mappings preserving zero products,
Studia Math. 155(1) (2003), 77–94.
[6] J. Dixmier, C*-algebras, North-Holland publishing company, Amsterdam–New York–
Oxford, 1977.
[7] M. J. Dupr′e and R. M. Gillette, Banach bundles, Banach modules and automorphisms
of C*-algebras, Pitman Research Notes in Mathematics Series 92, 1983.
[8] J. J. Font and S. Hern′andez, On separating maps between locally compact spaces, Arch.
Math. (Basel), 63 (1994), 158–165.
[9] J. M. G. Fell, The structure of algebras of operator fields, Acta Math., 106 (1961), 233–
280.
[10] J. M. G. Fell and R. S. Doran, Representations of *-Algebras, Locally Compact Groups,
and Banach *-Algebraic Bundles, Volume 1, Academic, New York (1988).
[11] L. T. Gardner, On isomorphisms of C*-algebras, American Journal of Mathematics, 87
(1965), no. 2, 384–396.
[12] H.-L. Gau, J.-S. Jeang and N.-C. Wong, Biseparating linear maps between continuous
vector-valued function spaces, J. Australian Math. Soc., Series A, 74 (2003), no. 1, 101–
111.
[13] J. E. Jamison and M. Rajagopalan, Wighted composition operator on C(X;E), J. Operator
Theory 19 (1988), 307–317.
[14] K. Jarosz, Automatic continuity of separating linear isomorphisms, Canad. Math. Bull.,
33 (1990), 139–144.
[15] J.-S. Jeang and N.-C.Wong, Weighted composition operators of C0(X)’s, J. Math. Anal.
Appl. 201 (1996), 981–993.
[16] R. V. Kadison, Isometries of operator algebras, Ann. of Math., 54 (1951), 325-338.
[17] R.-Y. Lee, On the C*-algebras of operator fields, Indiana Univ. Math. J., 25 (1978),
no. 4, 303–314.
[18] C.-W. Leung, C.-K. Ng and N.-C. Wong, Automatic Continuity and C0(­)-Linearity of
Linear Maps Between C0(­)-Modules, preprint.
[19] C.-W. Leung and N.-C. Wong, Zero Product Preserving Linear Maps of CCR C*-
algebras with Hausdorff Spectrum, J. Math. Anal. Appl., to appear.
[20] I. Raeburn and D. P. Williams, Morita equivalence and continuous-trace C*-algebras,
Mathematical Surveys and Monographs, 60, American Mathematical Society, Providence,
RI, 1998.
[21] S. Sakai, C*-algebras and W*-algebras, Spinger-Verlag, New York, 1971.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top