Balczo, M., Farago, T., Lajos, T., 2005. Modelling urban pollution
dispersion by using MISKAM. In: Proceedings der Konferenz
microCAD 2005, Miskolc University.
Benson, P.E., 1984. CALINE 4—A Dispersion Model for Predicting Air
Pollutant Concentrations near Roadways. FHWA User Guide. U.
Trinity Consultants Inc.
Chang, M.E. Cardelino, C., 2000. Application of the Urban Airshed
Model to Forecasting Next-day Peak Ozone Concentrations in Atlanta,
Georgia. J. Air and Waste Manage. Assoc. 50, 2010–2024.
Chen, K.S., Lin, C.F., Chou, Y.M., 2001. Determination of source
contributions to ambient PM2.5 in Kaohsiung, Taiwan, using a receptor
model. J. Air and Waste Manage. Assoc. 51, 489–498.
Chen, K.S., Ho, Y.T., Lai, C.H., Chou, Y.M., 2003. Photochemical
modeling and analysis of meteorological parameters during ozone
episodes in Kaohsiung, Taiwan. Atmos. Environ. 37, 1811–1823.
Chen, K.S., Chen, S.J., Lin, J.J., Hwang, K.L., 2006. Studies of Spatial
and Temporal Variations of Atmospheric PM2.5− Modeling and
Analysis of Source Contributions in Kao-Ping Area, Taiwan. Final
Report (NSC 94-EPA-Z-110-001) to EPA/NSC, Taiwan.
Chow, J.C., Liu, C.S., Cassmassi, J., Watson, J.G., Lu, Z., Pritchett, L.C.,
1992. A neighborhood-scale study of PM10 source contributions in
Rubidoux, California. Atmos. Environ. 26, 693–706.
Engelbrecht, J.P., Swanepoel, L., Chow, J.C., Watson, J.G., Egami, R.T.,
2002. The comparison of source contributions from residential coal and
low-smoke fuels, using CMB modeling, in South Africa. Environ. Sci.
and Policy 5, 157–167.
Espinosa, A.J.F., Rodriguez, M.T., Alvarez, F.F., 2004. Source
characterisation of fine urban particles by multivariate analysis of trace
metals speciation. Atmos. Environ. 38, 873–886.
Friedlander, S.K., 1973. Chemical element balances and identification of
air pollution sources. Environ. Sci. Technol. 7, 235–240.
Gifford Jr., F.A., 1976. Consequences of effluent releases. Nuclear Safety
17, 68–86.
Gordon, G.E., 1980. Receptor models. Environ. Sci. Technol. 14,
792-800.
Gordon, G.E., 1988. Receptor models. Environ. Sci. Technol. 22,
1132-1142.
Guo, H., Ding, A.J., So, K.L., Ayoko, G., Li, Y.S., Hung, W.T., 2008.
Receptor modeling of source apportionment of Hong Kong aerosols
and the implication of urban and regional contribution. Atmos. Environ.,
article in press.
Harrison, R.M., Smith, D.J.T., Luhana, L., 1996. Source apportionment
of atmospheric polycyclic aromatic hydrocarbons collected from an
urban location in Birmingham, U.K. Environ. Sci. Technol. 30,
825-832.
Hidy, G.M., Friedlander, S.K., 1971. The nature of the Los Angeles
aerosol. Proc. Second Int. Clean Air Congress. Academic Press.
Hien, P.D., Bac, V.T., Thinh, N.T.H., 2004. PMF receptor modelling of
fine and coarse PM10 in air masses governing monsoon conditions in
Hanoi, northern Vietnam. Atmos. Environ. 38, 189–201.
Hinds, W.C., 1997. Aerosol Technology: Properties, behavior, and
measurement of airborne particles, 2nd ed., John Wiley & Sons, Inc..
Holmes, N.S., Morawska, L., 2006. A review of dispersion modelling and
its application to the dispersion of particles: An overview of different
dispersion models available. Atmos. Environ. 40, 5902−5928
Hurley, P.J., Blockley, A., Rayner, K., 2001. Verification of a prognostic
meteorological and air pollution model for year-long predictions in the
Kwinana industrial region of Western Australia. Atmos. Environ. 35,
1871–1880.
Hurley, P., Manins, P., Lee, S., Boyle, R., Ng, Y.L. Dewundege, P., 2003.
Year-long, high-resolution, urban airshed modelling: Verification of
TAPM predictions of smog and particles in Melbourne, Australia.
Atmos. Environ. 37, 1899–1910.
Hurley, P.J., Physick, W.L., Luhar, A.K., 2005. TAPM: a practical
approach to prognostic meteorological and air pollution modeling.
Environ. Modelling and Software 20, 737–752.
Hurley, P., 2005a. The Air Pollurion Model (TAPM) Version 3. Part 1:
Technical Description. CSIRO Atmospheric Research Technical NO.
71.
Hurley, P., 2005b. The Air Pollurion Model (TAPM) Version 3. User
Manual. CSIRO Atmospheric Research Internal Paper NO.31.
Hurley, P., Physick, W.L., Luhar, A.K., Edwards M., 2005c. The Air
Pollurion Model (TAPM) Version 3. Part 2: Summary of some
verification studies. CSIRO Atmospheric Research Technical NO. 72.
Johnson, G.M., 1984. A simple model for predicting the ozone
concentration of ambient air, Proceedings of the 8th International
Clean Air and Environment Conference, New Zealand, Clean Air
Society of Australia and New Zealand.
Kneip, T.J., Kleinman, M.T., Eisenbud, M., 1973. Relative contribution
of emission sources to the total airborne particulates in New York City.
In Third International Clean Air Congress, Dusseldorf, FRG.
Luhar, A.K., Patil, R., 1989. A general finite line source model for
vehicular pollution dispersion. Atmos. Environ. 23, 555–562.
Luhar, A.K., Galbally, I.E., Keywood, M., 2006. Modelling PM10
concentrations and carrying capacity associated with woodheater
emissions in Launceston, Tasmania. Atmos. Environ. 40, 5543–5557.
Marcazzan, G.M., Ceriani, M., Valli, G., Vecchi, R., 2003. Source
apportionment of PM10 and PM2.5 in Milan (Italy) using receptor
modeling. Sci. of Total Environ. 317, 137–147.
Mensink, C., Colles, A., Janssen, L., Cornelis, J., 2003. Integrated air
quality modelling for the assessment of air quality in streets against the
council directives. Atmos. Environ. 37, 5177–5184.
Miller, F.J., Gardner, D.E., Graham, J.A., Lee, R.E., Wilson, W.E.,
Bachmann, J.D., 1979. Size considerations for establishing a standard
for inhalable particles, JAPCA 29, 610−615.
Oettl, D., Sturm, P., Almbauer, R., 2005. Evaluation of GRAL for the
pollutant dispersion from a city street tunnel portal at depressed level.
Environmental Modelling and Software 20, 499–504.
Olson, D.A., Turlington, J., Duvall, R.M., McDow, S.R., Stevens, C.D.,
Williams, R., 2008. Indoor and outdoor concentrations of organic and
inorganic molecular markers: Source apportionment of PM2.5 using
low-volume samples. Atmos. Environ. 42, 1742–1751.
Owega, S., Khan, B.U.Z., Dsouza, R., Evans, G.J., Fila, M., Jervis, R.E.,
2004. Receptor modeling of Toronto PM2.5 characterized by aerosol
laser ablation mass spectrometry. Environ. Sci. Technol. 38,
5712–5720.
Paatero, P., Tapper, U., 1994. Positive matrix factorization: A
non-negative factor model with optimal utilization of error estimates of
data values. Environmetrics 5, 111–126.
Pasquill, F., 1961. The estimation of the dispersion of windborne material.
Meteorology Magazine 90, 33–40.
Pearson, K., 1901. On line and planes of closest fit to systems of points in
space, Philosophy Magazine 2, 559 - 572.
Stern, R., Yamartino, R.J., 2001. Development and first evaluation of
micro-calgrid: a 3-D, urban-canopy-scale photochemical model. Atmos.
Environ. 35, 149–165.
Sokhi, R., Fisher, B., Lester, A., McCrae, I., Bualert, S., Sootornstit, N.,
1998. Modelling of air quality around roads. Proceedings of the 5th
International Conference on Harmonisation with Atmospheric
Dispersion Modelling for Regulatory Purposes, Greece.
Swietlicki, E., Krejci, R., 1996. Source characterisation of the Central
European atmospheric aerosol using multivariate statistical methods.
NIMB: Beam Interactions with Materials and Atoms 109/110, 519-525.
Thurston, G.D., Spengler, J.D., 1985. A quantitative assessment of source
contributions to inhalable particulate matter pollution in metropolitan
Boston. Atmos. Environ. 19, 9-25.
Tsai, Y.I., Chen, C.L., 2006. Atmospheric aerosol composition and
source apportionments to aerosol in southern Taiwan. Atmos. Environ.
40, 4751–4763.
Tsuang, B.J., Chao, C.P., 1999. Application of circuit model for Taipei
City PM10 simulation. Atmos. Environ. 33, 1789–1801.
USEPA (2002), SPECIATE 3.2. US Environmental Protection Agency,
released in November 2002.
Vecchi, R., Chiari, M., D’Alessandro, A., Fermo, P., Lucarelli, F.,
Mazzei, F., Nava, S., Piazzalunga, A., Prati, P., Silvani, F., Valli, G.,
2008. A mass closure and PMF source apportionment study on the
sub-micron sized aerosol fraction at urban sites in Italy. Atmos.
Environ. 42, 2240–2253.
Vega, E., Garcia, I., Apam, D., Ruiz, M.E., Baraiaus, M., 1997.
Application of a Chemical Mass Balance Receptor Model to
Respirable Matter in Mexico City. J. Air and Waste Manage. Assoc. 47,
524–529.
Vignati, E., Berkowicz, R., Palmgren, F., Lyck, E., Hummelshøj, P., 1999.
Transformation of size distributions of emitted particles in streets. Sci.
of Total Environ. 235, 37–49.
Watson, J.G., 1979. Chemical element balance receptor model
methodology for assessing the sources of fine and total particulate
matter in Portland, Oregon. Ph.D. Oregon Graduate Center, Beaverton,
OR.
Watson, J.G., Robinson, N.F., Lewis, C., Coulter, T., 1997. Chemical
Mass Balance Receptor Model-Version 8 (CMB8) User’s Manual.
Desert Research Institute Document No. 1808. 1D1.
Watson, J.G., Robinson, N.F., Fujita, E.M., Chow, J.C., Pace, T.G.,
Lewis, C., Coulter, T., 1998. CMB8 applications and validation protocol for PM2.5 and VOCs, Desert Research Institute Document No.1808.2D1.
Wark, K., Warner, C.F., Davis, W.T., 1998. Air pollution: its origin and control, 3rd ed., Addison Wesley Longman, Inc..
Willmott, C.J., 1982. Some comments on the evaluation of model performance. Bull. Amer. Meteorol. Soc. 63, 1309-1313.
Willmott, C.J., Ackleson, S.G., Davis, R.E., Feddema, J.J., Klink, K.M.,
Legates, D.R., O’Donnell, J., Rowe, C.M., 1985. Statistics for the Evaluation and Comparisons of Model. J. Geophys. Res. 90,8995-9005.
Wilson, J.G., Zawar-Reza, P., 2006. Intraurban-scale dispersion modelling of particulate matter concentrations: Applications for exposure estimates in cohort studies. Atmos. Environ. 40, 1053–1063
Winchester, J.W., Nifong, G.D., 1971. Water Pollution in Lake Michgan by Trace Elements from Pollution Aerosol Fallout. Water, Air, & Soil Pollution 1, 50–64.
Zawar-Reza, P., Kingham, S., Pearce, J., 2005. Evaluation of a year-long
dispersion modelling of PM10 using the mesoscale model TAPM for
Christchurch, New Zealand. Sci. of Total Environ. 349, 249-259.
陳康興、陳瑞仁、林銳敏、黃國林,2007,「高屏地區大氣懸浮微粒(PM10 及PM2.5) 特性及成因分析研究-總計畫暨子計畫一:高屏地區大氣懸浮微粒(PM10 及PM2.5)化學組成特性 時空變化調查分析、來源模擬及成因探討研究」,95 年度「環保署/國科會空污防
制科研合作計畫」成果完整報告,NSC 95-EPA-Z-110-001。
何宜達,2004,「高屏地區臭氧事件日光化學模式解析及氣象條件之探討」,中山大學環工所博士論文。柳中明及尤思喻,2006,「高屏地區大氣懸浮微粒(PM10 及PM2.5)特性及成因分析研究子計畫二:本土化「空氣品質指標」(AQI)研析與建議」,95 年度「環保署/國科會空污防制科研合作計畫」成果完整報告,NSC 95-EPA-Z-002-005。
廖琇怡,2005,「高雄市臭氧特性與氣象因子之相關性探討」,中山大學環工所碩士論文。