(3.226.72.118) 您好!臺灣時間:2021/05/12 05:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王辰文
研究生(外文):Chen-wen Wang
論文名稱:以空氣擴散模式評估雪山隧道移動車輛尾氣排放對鄰近空氣品質之影響
論文名稱(外文):Effects of Automoblie Tailpipe Emissions in the Hsuehshan Tunnel on the Air Quality of Neighboring Areas Using ADMS Model
指導教授:陳康興陳康興引用關係
指導教授(外文):Kang-Shin Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:181
中文關鍵詞:空氣污染物ADMS移動污染源長隧道空氣品質模式
外文關鍵詞:Air pollutantsADMSMobile sourceLong tunnelAir quality model
相關次數:
  • 被引用被引用:5
  • 點閱點閱:311
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雪山隧道為臺灣及東南亞第一長公路隧道,全長約12.9公里。通車後大幅縮短臺北與宜蘭兩地之往返時間,帶來旅運上之便利;但同時也帶來移動車輛數目和污染源增加,且可能經長隧道累積,污染物濃度更為提升。
本研究主要應用ADMS-Roads (Atmospheric Dispersion Modelling System for Roads)解析雪山隧道內移動車輛尾氣經由出入口與豎井排放至鄰近大氣中的擴散情形,主要模擬物種為一氧化碳、氮氧化物與二氧化硫,並於2008年冬季在坪林行控中心與頭城工務段進行採樣分析,目的是評估其污染物對鄰近空氣品質之影響。經由採樣量測結果,非假日時,坪林(頭城)之一氧化碳濃度為0.49 (0.55) ppm,氮氧化物濃度為10.60 (14.83) ppb,二氧化硫濃度為4.80 (7.47) ppb;而在假日時,坪林(頭城)之一氧化碳濃度為0.66 (0.64) ppm,氮氧化物濃度為16.88 (15.12) ppb,二氧化硫濃度為4.70 (4.20) ppb。顯示假日因車潮增加,污染物濃度稍高於非假日之污染物濃度,但不顯著。
由模擬結果顯示,雪山隧道內移動車輛尾氣排放對於鄰近空氣品質影響不顯著,惟兩端出口處附近約200公尺內,一氧化碳和二氧化氮濃度偏高,甚至超過空氣品質標準。應用模式評估污染貢獻量,顯示其並非鄰近地區最主要污染物貢獻來源。由風向模擬測試結果顯示,當風向為北風(東北風)時,其對於隧道南端(北端)鄰近空氣品質影響最大。在模擬成效方面,模擬值與量測值之相關係數(R)為0.34 - 0.81,屬於中度至高度相關;且一致性指數(IOA) 0.58 - 0.77,正規化均方根誤差(NMSE)為0.03 - 0.25,模擬結果良好。本研究成果可以作為在交通尖峰時段或旅遊旺季,甚至未來加入更多車種行駛時之模擬,可供相關管理單位擬定交通管制策略。
The Hsuehshan tunnel, whose length is about 12.9 kilometers, is the longest tunnel in Taiwan and Southeast Asia. Since the tunnel is used, it reduces the traveling time from Taipei to Ilan and brings the convenience of transportation; but the vehicles and pollution sources are added. Furthermore, the concentrations of pollutants are increased by accumulation in the long tunnel.
This study estimates the effects of automobile tailpipe emissions in the Hsuehshan tunnel on the air quality of neighboring areas by using Atmospheric Dispersion Modelling System for Roads (ADMS-Roads). This work simulates carbon monoxide (CO), nitrous oxides (NOx) and sulfur dioxide (SO2) at two sites (Pin-Ling and Tou-Cheng management centers) in northern Taiwan in winter of 2008. The average concentrations of CO, NOx and SO2 at Pin-Ling (Tou-Cheng) management centers respectively are 0.49 (0.55) ppm, 10.60 (14.83) ppb and 4.80 (7.47) ppb on non-holiday and 0.66 (0.64) ppm, 16.88 (15.12) ppb and 4.70 (4.20) ppb on holiday. It shows that the concentrations of pollutants on holiday are higher than on non-holiday by increasing vehicles.
Simulated results show that effects of traffic exhaust in the tunnel on the air quality of neighboring areas are less. Estimations using the ADMS-Roads suggest that the emissions are not the predominant contributors at two sites. The effect is the highest with northern (northeastern) winds at the southern (northern) area of the Hsuehshan tunnel. Comparisons between simulations and measurements at both sites are satisfactory. Simulated values are generally in agreement with measured values, with a correlation coefficient of R = 0.37 – 0.81, the index of agreement (IOA) = 0.58 – 0.77, and the normalized mean square error (NMSE) = 0.03 – 0.25. The ADMS-Roads will be applied to assess the environmental impact while the tunnel will be allowed more types of vehicles to drive in the future.
謝誌……….…………………………………………………….. I
中文摘要…….………………………………………………….. II
英文摘要……….……………………………………………….. III
目錄…...………………………………………………..……...... V
表目錄…………………………………………………...…........ IX
圖目錄…………………………………………………………... XI

第一章 前言…...……………………………..……………. 1-1
1.1 研究緣起…………………………….………………... 1-1
1.2 研究目的……………….……………..…………......... 1-2

第二章 文獻回顧...…………………………………..……. 2-1
2.1 雪山隧道簡介…………………………………..…...... 2-1
2.1.1 構造及尺寸….………………………………............ 2-1
2.1.2 通風系統..………………………………………...… 2-3
2.1.3 空氣品質設計資料及標準………..…………...…… 2-3
2.1.4 車流量概況…..………………….……………..…… 2-5
2.2 雪山隧道背景資料……………..….………..………... 2-7
2.2.1 氣象資料…….…..……………….……..…………... 2-7
2.2.2 空氣品質概述…………..……….……..…………… 2-11
2.3 移動車輛尾氣排放物之特性概述……....…………… 2-14
2.4 空氣品質模式相關研究………….…..………………. 2-16
2.4.1 箱型模式……………………….…..……………….. 2-16
2.4.2 高斯模式…………………….......………………….. 2-17
2.4.3 拉格朗制與尤拉模式………...…………………….. 2-18
2.4.4 計算流體動力學模式…………...………………….. 2-18
2.4.5 ADMS模式….…………………...………………...... 2-19

第三章 研究方法...…………………………………..……. 3-1
3.1 研究架構及流程……………………...…………..…... 3-1
3.2 採樣規劃……...….………………...………………..... 3-2
3.2.1 採樣地點與頻率......…………...…………………… 3-2
3.2.2 氣象資料蒐集與量測………...…..………………… 3-4
3.2.3 隧道與豎井通風量之量測….....…………………… 3-4
3.2.4 車流量與車速調查………......……………………... 3-4
3.3 氣狀污染物之採樣及分析..…...……………………... 3-4
3.3.1 二氧化硫………………..…...……………………… 3-5
3.3.2 二氧化氮及氮氧化物…............….………………… 3-5
3.3.3一氧化碳…………………..…...……………………. 3-5
3.3.4 總碳氫化合物………………...…………………….. 3-6
3.3.5 品保與品管…………………...…………………….. 3-6
3.4 ADMS模式概述……………...……………………….. 3-9
3.4.1 模式相關參數……………...……………………….. 3-9
3.4.2 ADMS模式運作方程式………....………………...... 3-11
3.4.3 FLOWSTAR模式……………..……………………. 3-13
3.4.4 ADMS化學反應模組………...……………………... 3-14
3.4.5 模式輸入資料……………...……………………….. 3-15
3.4.6 模式評估工具……………...……………………….. 3-17

第四章 結果與討論...………………………………..……. 4-1
4.1 受體點空氣污染物分布特性……...……………..…... 4-1
4.1.1 採樣日氣象概況....…….………...………………..... 4-1
4.1.2 受體點大氣採樣濃度..………...…………………… 4-11
4.1.3 空氣污染物分布特性………...…..………………… 4-15
4.2 ADMS模式模擬…………….....……………………… 4-17
4.2.1 非假日模擬結果…………..………………………... 4-23
4.2.2 假日模擬結果………...…...………………………... 4-29
4.3 模擬成效評估…...……….…………………………… 4-35
4.4 臭氧模擬……………...........…….…………………… 4-39
4.5 貢獻量評估………...…………………………………. 4-43
4.6 風向對污染物擴散之影響…………...………………. 4-45
4.7 車流量對污染物擴散之影響……...…………………. 4-49

第五章 結論與建議…...…………………………..………. 5-1
5.1 結論…………………………………….....…………... 5-1
5.2 建議…………………….…………….....…………...... 5-3

參考文獻………..…...……………………..…..…………. 参-1
附錄A 模擬案例風場模擬結果…………………………... 附A-1
附錄B 模擬案例空氣污染物模擬結果…….…………...... 附B-1
附錄C 模擬案例O3模擬結果…………..………………… 附C-1
附錄D 作者簡歷……………...…………………………… 附D-1
Baggott, S., Cai, X., McGregor, G., Harrison, R.M., 2006. Model Simulation of Meteorology and Air Quality during the Summer PUMA Intensive Measurement Campaign in the UK West Midlands Conurbation. Science of The Total Environment 360, 26 - 42.
Benson, P.E., 1984. CALINE 4-A Dispersion Model for Predicting Air Pollutant Concentrations near Roadways. FHWA User Guide. U. Trinity Consultants Inc.
Bhattachryya, G.K. and Johnson, R.A., 1977. Statistical Concepts and Methods. New York: John Wiley.
Carruthers, D.J., Dixon, P., McHugh, C.A., Nixon, S.G., Oates, W., 1999. Determination of Compliance with UK and EU Air Quality Objectives from High Resolution Pollutant Concentration Maps Calculated Using ADMS-Urban.
Carruthers, D.J., Holroyd, R.J., Hunt, J.C.R., Weng, W.S., Robins, A.G., Apsley, D.D., Smith, F.B., Thomson, D.J., Hudson, B., 1991. UK Atmospheric Dispersion Modeling System. In Proceedings of the 19th NATO/CCMS International Technical Meeting on Air Pollution Modeling and its Application, Crete, Greece. Eds. Han van Dop and Deorge Kallos, Plenum Publishing Corporation, New York.
Carruthers, D.J., Weng, W.S., Hunt, J.C.R., Holroyd, R.J., 1992. Plume/Puff Spread and Mean Concentration Module Specifications. ADMS Paper P10/01Q/99.
Carruthers, D.J., Edmunds, H.A., et al., 2000. Use and Validation of ADMS-Urban in Contrasting Urban and Industrial Locations. International Journal of Environment and Pollution 14, 364 - 374.
CERC, 2007. ADMS 4 User Guide Version 4.0. Cambridge Environment Research Consultants Ltd. 3 King’s Parade, Cambridge, CB2 1SJ, UK.
CERC, 2006. ADMS-Roads User Guide Version 2.2. Cambridge Environment Research Consultants Ltd. 3 King’s Parade, Cambridge, CB2 1SJ, UK.
CERC, 2004. FLOWSTAR User Guide Version 7.1 Cambridge Environment Research Consultants Ltd. 3 King’s Parade, Cambridge, CB2 1SJ, UK.
Chen, K.S., Ho, Y.T., Lai, C.H., Chou, Y.M., 2003. Photochemical Modeling and Analysis of Meteorological Parameters during Ozone Episodes in Kaohsiung, Taiwan. Atmospheric Environment 37, 1811 - 1823.
Gidhagen, L., Johansson, C., et al., 2004. Simulation of NOx and ultrafine particles in a street canyon in Stockholm, Sweden. Atmospheric Environment 38, 2029 - 2044.
Gifford Jr., F.A., 1976. Consequences of effluent releases. Nuclear Safety 17 (1), 22 - 32.
Gokhale, S., Raokhande, N., 2008. Performance Evaluation of Air Quality Models for Predicting PM10 and PM2.5 Concentrations at Urban Traffic Intersection during Winter Period. Science of the Total Environment 394, 9 - 24.
Hirtl, M., Baumann-Stanzer, K., 2007. Evaluation of Two Dispersion Models (ADMS-Roads and LASAT) Applied to Street Canyons in Stockholm, London and Berlin. Atmospheric Environment 41, 5959 - 5971.
Holmes, N.S., Morawska, L., 2006. A Review of Dispersion Modelling and Its Application to the Dispersion of Particles: An Overview of Different Dispersion Models Available. Atmospheric Environment 40, 5902 - 5928.
Hunt, J.C.R., 1985. Turbulent Diffusion from Sources in Complex Flows. Annual Review of Fluid Mechanics 17, 447 - 485.
Hunt, J.C.R., Holroyd, R.H., Carruthers, D.J., 1988. Preparatory Studies for A Complex Dispersion Model. Report to NRPB, AWE, HMIP, HSE, CERC Report HB9/88. Cambridge Environment Research Consultants Ltd.
Hurley, P., Manins, P., et al., 2003. Year-Long, High-Resolution, Urban Airshed Modelling: Verification of TAPM Predictions of Smog and Particles in Melbourne, Australia. Atmospheric Environment 37 (14), 1899 - 1910.
Johnson, R.A., and Wichern, D.W., 2002. Applied Multivariate Statisical Analysis. New Jersey, Prentice Hall.
Lai, C.H., Chen, K.S., Ho, Y.T., Peng, Y.P., Chou, Y.M., 2005. Receptor Modeling of Source Contributions to Atmospheric Hydrocarbons in Urban Kaohsiung, Taiwan. Atmospheric Environment 39, 4543 - 4559.
Lai, C.H., Chen, K.S., Chang, P.J., Peng, Y.P., Tasi, P.C., 2008. Emission Factors of Volatile Organic Compounds in a Long Freeway Tunnel. The Air & Waste Management Association’s 101th Annual Conference & Exhibition.
Lai, C.H., Chen, K.S., Chang, P.J., Peng, Y.P., Shen, W.S., Chen, Y.Q., Wang, Z.W., 2008. Emission Factors of Volatile Organic Compounds in a Long Freeway Tunnel. 12th Mainland-Taiwan Environmental Protection Conference.
Lodge, Jr., J. P., 1989. Methods of Air Sampling and Analysis. 3rd ed., Lewis Publishers, Inc., Chelsea, Michigan.
Luhar, A.K., Patil, R., 1989. A General Finite Line Source Model for Vehicular Pollution Dispersion. Atmospheric Environment 23, 555 - 562.
Luhar, A., Hurley, P., 2002. Comparison of Meteorological and Dispersion Predictions Obtained Using TAPM with the Indianapolis (Urban), Kincaid (Rural) and Kwinana (Coastal) field data sets. Submitted to the 8th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Sofia Bulgaria.
Luhar, A.K., Hurley, P.J., 2003. Evaluation of TAPM, a Prognostic Meteorological and Air Pollution Model, Using Urban and Rural Point-Source Data. Atmospheric Environment 37, 2795 - 2810.
Luhar, A.K., Venkatram, A., Lee, S.M., 2006. On Relationships between Urban and Rural Near-Surface Meteorology for Diffusion Applications. Atmospheric Environment 40, 6541 - 6553.
Mensink, C., Colles A., Janssen, L., Cornelis, J., 2003. Integrated Air Quality Modelling for the Assessment of Air Quality in Streets Against the Council Directives. Atmospheric Environment 37, 5177 - 5184.
Moore, D.J., 1976. Calculation of Ground Level Concentration for Different Sampling Periods and Source Locations. Atmospheric Pollutions, Elsevier, Amsterdam, 5160.
Owen, B., Peace, H., Raper, D.W., 2002. Comparison of road traffic emission factors and testing by comparison of modeled and measured ambient air quality data. Presentation at Seventh International Highway & Urban Pollution Symposium Barcelona.
Pasquill, F., 1961. The Estimation of the Dispersion of Windborne Material. Meteorology Magazine 90 (1063), 33 - 40.
Sharan, M., Yadav, A.K., et al., 1996. Plume Dispersion Simulation in Low-Wind Conditions Using Coupled Plume Segment and Gaussian Puff Approaches. Journal of Applied Meteorology 35 (10), 1625 - 1631.
Sokhi, R., Fisher, B., 1998. Modelling of Air Quality around Roads. In: Proceedings of the 5th International Conference on Harmonisation with Atmospheric Dispersion Modelling for Regulatory Purposes, Greece.
Soulhac, L., Puel, C., Duclaux, O., Perkins, R.J., 2003. Simulations of Atmospheric Pollution in Greater Lyon an Example of the Use of Nested models. Atmospheric Environment 37, 5147 - 5156.
Thomson, D.J., Manning, A.J., 2001. Along-Wind Dispersion in Light Wind Conditions. Boundary-Layer Meteorology 98 (2), 341 - 358.
Tsuang, B.J., 2003. Quantification on the Source / Receptor Relationship of Primary Pollutants and Secondary Aerosols by a Gaussian Plume Trajectory Model: Part I Theory. Atmospheric Environment 37 (28), 3981 - 3991.
Tsyro, S.G., 2001. Description of the Lagrangian Acid Deposition Model. Web site: http://www.emep.int/acid/ladm.html
USEPA, 2003a. Clean Air Act 2003. Retrieved April 2004, from Web site: http://www.epa.gov/ora/caa/contents.html
USEPA, 2003b. Integrated Risk Information System 2003. Retrieved April 2004, from Web site: http://cfpub.epa.gov/iris/
Van Dop, H., Steenkist, R., Nieuwstadt, F.T.M., 1979. Recised estimates for continuous shoreline fumigation. Journal of applied meteorology 24, 1194 - 1207.
Venkatram, A., Karamchandani, P., Pai, P., Goldstein, R., 1994. The Development and Application of a Simplified Ozone Modeling System. Atmospheric Environment 28, 3665 - 3678.
Wang, W.C., Chen, K.S., Wang, S.K., Lee, H.C., Tsai, M.Y., 2009. Modeling Atmospheric PM10 Concentrations during Severe Pollution Events in Southern Taiwan. Atmospheric Research 92, 159 - 171.
Weil, J.C., 1985. Updating Applied Diffusion Models. Journal of climate and applied meteorology 24, 1111 - 1130.
Weng, W.S., Richards, K.J., Carruthers, D.J., 1988. Some Numerical Studies of Turbulent Airflow over hills. Proc. 2nd European Turbulence Conference.
Willmott, C.J., 1981. On the Validation of Models. Physical Geography 2, 184 - 194.
Willmott, C.J., Ackleson, S.G., Davis, R.E., Feddema, J.J., Klink, K.M., Legates, D.R., O’Donnell, J., Rowe, C.M., 1985. Statistics for the Evaluation and Comparisons of Models. Journal of Geophysical Research 90, 8995 - 9005.
Zawar-Reza, P., Kingham, S., Pearce, J., 2005. Evaluation of a year-long dispersion modeling of PM10 using the mesoscale model TAPM for Christchurch, New Zealand. Science of Total Environment 349, 249 - 259.
王文正,2008。以空氣品質模式及受體模式解析懸浮微粒排放源之貢獻量。國立中山大學博士畢業論文。
王亭復、習良孝、江旭程、樓基中、陳玄、吳崇彥、黃國倫、許中杰、鄭啟銘、黃海明、黃淳宜、劉棋煌、張言祥、陳全祿、蔡右任,1995。北宜高速公路坪林隧道豎井排氣對茶樹生長環境影響調查研究。交通部臺灣區國道新建工程局。
林順信、楊之遠、葉芳露、林文印、張章堂,2006。雪山隧道車流量對隧道內空氣品質影響之研究。第23屆空氣污染控制技術研討會,東海大學。
林振基,2006。北宜高速公路雪山隧道設計重點回顧。國道五號工程技術專題研討會,臺灣大學。
林達雄、蕭慧娟、朱雨其、張順欽、邱富淞、簡瑞清,2006。雪山隧道空氣品質監測及車輛污染排放係數調查。行政院環保署。
張栢瑞,2007。雪山隧道內車輛與豎井通風系統之揮發性有機物排放量推估。國立中山大學碩士畢業論文。
陳怡全,2009。雪山隧道空氣污染物實場調查分析。國立中山大學碩士畢業論文。
廖秀怡,2005。高雄市臭氧特性與氣象因子之相關性探討。國立中山大學碩士畢業論文。
顏有利、林文印、邱顯文,2006。八卦山隧道揮發性有機物排放特性分析。第23屆空氣污染控制技術研討會,東海大學。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔