(3.236.222.124) 您好!臺灣時間:2021/05/10 16:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張鈺鋒
研究生(外文):Yu-feng Chang
論文名稱:以生物處理法處理丙二醇甲醚醋酸酯(PGMEA)與甲苯之研究
論文名稱(外文):Biotreatment of propylene glycol methyl ether acetate (PGMEA) and toluene in air streams
指導教授:周明顯周明顯引用關係
指導教授(外文):Ming-Shean Chou
學位類別:博士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:87
中文關鍵詞:生物濾床揮發性有機物質活性污泥丙二醇甲醚醋酸酯(PGMEA)甲苯疏水性揮發性有機物蛇木屑
外文關鍵詞:fern chipspropylene glycol monomethyl ether acetate (PGMEA)volatile organic compounds (VOCs)BiofilterDiffuserBio-oxidationHydrophobic VOCsActivated sludge aeration
相關次數:
  • 被引用被引用:1
  • 點閱點閱:876
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
揮發性有機物(VOCs)廢氣處理方法,包括:熱焚化、活性炭吸附、化學洗滌、冷凝及生物處理法等。其中生物處理法具有設置及操作成本較為經濟之優點,只要妥善設計生物處理設備,生物處理法應是經濟有效之處理技術。
本研究分別以單一填充濾料-蛇木屑之生物濾床及活性污泥池注入法去除揮發性有機物質。
一般而言,生物濾床傳統填充濾料的缺點包括:壓密、乾燥、分解等,這些問題往往造成生物濾床處理效能變差,而單純的蛇木屑濾料可避免這些問題。本研究目的主要在探討以單一填充濾料-蛇木屑之生物濾床,處理排氣中之丙二醇甲醚醋酸酯(PGMEA)之處理效能。蛇木屑填充濾料具有下列幾種優點:(1)組成簡單、(2)壓損低(<20 mmH2O m-1)、(3)容易調整濕度、營養鹽、pH、代謝產物易去除、(4)設置及操作成本較經濟(US$ 174 ~ 385 m-3)、(5)荷重較輕(濕基約290 kg m-3)等。本研究設置上下二槽式向下流之生物濾床 (2.18 m 高 0.4 m × 0.4 m 寬),每槽填充0.3公尺高之蛇木屑,濕度控制在50 ~ 74%、pH為6.5 ~ 8.3、空塔停留時間(EBRT, empty bed retention time)為0.27 ~ 0.4 分、進流之PGMEA濃度控制在100 ~ 750 mg m-3、有機體積負荷小於170 g m-3 h-1,營養鹽每天提供尿素66 g m-3、磷酸二氫鉀13.3 g m-3及奶粉1 g m-3,PGMEA之去除效率最高可達94%,其中添加奶粉為維持本試驗良好及穩定之處理效果之主要原因。
本研究另以活性污泥池注入法處理疏水性揮發性有機物(甲苯,700 ~ 800 mg m-3),本試驗目的主要在探討高濃度活性污泥(MLSS)、液面高度與不同曝氣設備對去除疏水性揮發性有機物效率之影響。本試驗之試驗槽體為圓柱形,直徑20公分,高140公分,底部設有直徑2 mm之曝氣孔56個,或細微孔(100 μm)之曝氣裝置,液深控制在0.2 ~ 1.0 m之間,曝氣量為2.2 L min-1。研究結果顯示,高濃度活性污泥(MLSS,10,000 ~ 40,000 mg L-1),並無法有效增加甲苯之傳輸與去除效率,對甲苯之去除效率並未明顯提昇。而設置具較高質傳係數之曝氣設施(10 ~ 15 h-1),在一般活性污泥濃度(2000 ~ 4000 mg L-1)下,即可獲得較高之去除效率。因此,使用具較高質傳係數(微細孔)之曝氣設施,液面高度在0.4公尺以上,曝氣強度低於5.0 m3 m-2 h-1,對於疏水性揮發性有機物(甲苯)之去除效率可達95%。
Biotreatment for air pollution control can generally be categorized as biofilter, bioscrubbing and biotrickling filter systems. Generally, biotreatments could be effective and more economical treatment for containment waste gas if designed and operated properly.
A two stage down-flow biofilter (2.18 m in height and 0.4 m×0.4 m in cross-sectional area) was constructed to develop a biofilter packed only with fern chips for the removal of air-borne propylene glycol monomethyl ether acetate (PGMEA). Both stages were packed with fern chips of 0.30 m in height and 0.40 m ×0.40 m in cross section. Fern chips could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters. In addition, the fern chip medium has the following merits: (1) simplicity in composition, (2) low pressure drop for gas flow (< 20 mmH2O m-1), (3) simple in humidification, nutrient addition, pH control, and metabolite removal, (4) economical (USD$ 174 – 385 m-3), and (5) low weight (wet basis around 290 kg m-3). Results indicate that with operation conditions of media moisture content controlled in the range of 50 – 74%, media pH of 6.5 – 8.3, EBRT (empty bed retention time) of 0.27 – 0.4 min, influent PGMEA concentrations of 100 to 750 mg m-3, volumetric organic loading of < 170 g m-3 h-1, and nutrition rates of Urea-N 66.0 g m-3.day-1, KH2PO4-P 13.3 g m-3.day-1 and milk powder 1.0 g m-3 day-1, the fern-chip packed biofilter could achieve an overall PGMEA removal efficacy of around 94%. Instant milk powder or liquid milk was essential to the good and stable performance of the biofilter for PGMEA removal.
An activated sludge aeration basin (20 cm i.d., 140 cm height) equipped with either a coarse air diffuser (a plastic pipe perforated with 56 orifices of 2 mm in diameter) or a fine diffuser (porous plastic type with 100-micrometer pores) was utilized to treat an air-borne hydrophobic VOC (toluene, 700 – 800 mg m-3). The purposes of this study were to test the influences of both MLSS and diffuser type on the VOC removal efficiency. Results show that higher MLSS (mixed liquor suspended solids) such as 10,000 – 40,000 mg L-1 in the mixed liquor did not enhance greatly the transfer and removal of the introduced toluene. Instead, activated sludge basins with a normal MLSS (e.g., 2,000 – 4,000 mg L-1) in the mixed liquor and an efficient gas diffusion system with volumetric VOC transfer coefficient of around 10 – 15 h-1 can be used for the removal of hydrophobic VOCs from the introduced gas. For achieving a removal of over 95% of the introduced toluene or similar hydrophobic VOCs, commercial air diffusers for aerobic biological wastewater treatment basins can be used with a submerged liquid depth of over 0.40 m over the diffusers and an aeration intensity (air flow rate/basin cross-sectional area) of lower than 5.0 m3 m-2 h-1.
CHAPTER 1 INTRODUCTION 1
1.1 Initiation Of The Study 1
1.2 Objects Of Research 2
1.3 Organization Of Dissertation 3
CHAPTER 2 LITERATURE SURVEY 4
2.1 Biofilter 4
2.2 Bioscrubber 8
2.2.1 Introduction 8
2.2.2 Model Development 13
2.2 Henry’s law constant of gas-water system 18
CHAPTER 3 BIOFILTER PACKED WITH FERN CHIPS 21
3.1 Introduction 21
3.2 Materials And Methods 24
3.2.1 Experimental Setup 24
3.2.2 Materials 26
3.2.3 Operation 29
3.2.4 Analytical 30
3.3 Results And Discussion 31
3.3.1 Performance on PGMEA Elimination 31
3.3.2 Pressure Drop 40
3.3.3 Economical Analysis 44
3.4 Conclusions 47
CHAPTER 4 BIOSCRUBBER WITH DIFFERENT ACTIVATED SLUDGE CONCENTRATION AND GAS DIFFUSER 48
4.1 Introduction 48
4.2 Materials And Methods 51
4.2.1 Experimental Setup 51
4.2.2 Materials and Operation 53
4.2.3 Analytical 54
4.3 Results And Discussion 57
4.3.1 Effect of Activated Sludge Concentration 57
4.3.2 Effect of Gas Diffuser 63
4.4 Conclusions 66
CHAPTER 5 CONCLUSIONS 67
5.1 Biofilter 67
5.2 Bioscrubbing (Activated Sludge Tank) 68
REFERENCES 69
APPENDIX I AUTHOR’S PUBLICATION LIST 73
APPENDIX II PGMEA AND TOLUENE PROPERTIES 74
NOMENCLATURE 75
Alonso, C.; Suidan, M.T.; Kim, B.R.; Kim, B.J. (1998) Dynamical Mathematical Model for the Biodegredation of VOCs in a Biofilter: Biomass Accumulation Study; Environ. Sci. Technol. 32 (20), 3118-3123.
American Public Health Association. (1989). Standard Methods for the Examination of Water and Waste Water. 17th ed.
Barton, J.W., Vodraska, C.D., Flanary, S.A. and Davison, B.H. (2003). Partitioning of BTEX Constituents and Chloroorganics in High-Biomass Systems. Environ. Prog. 22: 95-102.
Bielefeldt, A.R. and Stensel, H.D. (1998). BTEX-Contaminated Gas Treatment in A Shallow, Sparged, Suspended-Growth Bioreactor. Bioremediation J. 1: 241-254.
Bielefeldt, A.R. and Stensel, H.D. (1999). Treating VOC-Contaminated Gases in Activated Sludge: Mechanistic Model to Evaluate Design and Performance. Environ. Sci. Technol. 33: 3234-3240.
Bowker RPG. (2000). Biological odour control by diffusion into activated sludge basin. Water Sci Technol. 41(6):127-132.
Burgess J.E., Parsons, S.A. Stuetz, R.M.(2001). Developments in odour control and waste gas treatment biotechnology: a review Biotechnology Advances 19 p. 35-63.
Chang, F.T.; Pei, P.S.; Lin, Y.C. (2003) Adsorption and Desorption Characteristics of Semiconductor Volatile Organic Compounds on the Thermal Swing Honeycomb Zeolite Concentrator; J. Air and Waste Manage. Assoc. 53, 1384-1390.
Chen, Y.X.; Yin, J.; Wang, K.X. (2005) Long–term Operation of Biofilters for Biological Removal of Ammonia; Chemosphere, 58, 1023.
Cheng, W.H. (2008). Adsorption Characteristics of Granular Activated Carbon and SPME Indication of VOCs Breakthrough. Aerosol Air Qual. Res. 8: 178-187.
Chou, M.S. (2003) Development and Assessment on VOC-Emission Abatement Technologies for Semiconductor and Photoelectric Industries; Research Report of National Science Council, Taiwan, Contrast No. NSC92-EPA-Z-110-002.
Chou, M.S. and Chang, H.Y. (2005). Biooxidation of Air-Borne VOCs by An Activated Sludge Aeration Tank. J. Air Waste Manage. Assoc. 55: 604-611.
Chou, M.S. and Lin, J.H. (2006). Partition of Volatile Organic Compounds in Activated Sludge and Wastewater. J. Air Waste Manage. Assoc. 56: 1083-1090.
Chou, M.S.; Wu, S. L. (1998) Bioconversion of Dimethylformamide in Biofilters; J. Air and Waste Manage. Assoc. 48, 306-316.
Chung, Y.C.; Huang, C.; Tseng, C.P. (2001) Biological Elimination of H2S and NH3 from Waste Gases by Biofilter Packed with Immobilized Heterotrophic Bacteria; Chemosphere, 43, 1043.
Cooper, C.D.; Alley, F.C. (1994) Air pollution control a design approach; Waveland Press, 2nd ed..
David, M.D., Fendinger, N.J. and Hand, V.C. (2000). Determination of Henry''s Law Constants for Organosilicones in Acutal and Simulated Wastewater. Environ. Sci. Technol. 34: 4554-4559.
Davison, B.H., Barton, J.W., Klasson, K.T. and Francisco, A.B. (2000). Influence of High Biomass Concentrations on Alkane Solubilites. Biotechnol. Bioeng. 68: 279-284.
Deshusses, M.A. (1997) Transient Behaviour of Biofilters: Start-up, Carbon Balances, and Interactions between Pollutants; J. Environ. Eng. June, 563-568.
Devinny, J.S.; Deshusses, M.A.; Webster, T.S. (1999) Biofiltration for Air Pollution Control; Lewis Publishers, New York.
Environmental Protection Administer, Promotion Project of Control Strategies and Reduction Measures for Air Pollutants-VOCs of Stationary Sources; Report of Environmental Protection Administer, Taiwan, ROC, 2003.
Environmental Protection Agency, USA, Handbook: Control Technologies for Hazardous Air Pollutants, EPA/625/6-91/014 1991.
Hammervold, R.E., Overcamp, T.J., Grady, C.P.L. Jr. and Smets, B.F. (2000). A Sorptive Slurry Bioscrubber for the Control of Acetone. J. Air Waste Manage. Assoc. 50: 954-960.
Iranpour, R.; Cox, H.H.J.; Deshusses, M.A.; Schroeder, E.D. (2005) Literature Review of Air Pollution Control Biofilters and Biotrickling Filters for Odor and Volatile Organic Compound Removal; Environ. Prog. 24 (3), 254-267.
Judd, S. (2006). The MBR Book, Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment, Elsevier, Oxford.
Lee, D.H.; Lau, A.K.; Pinder, KL. (2001) Development and Performance of an Alternative Biofilter System; J. Air and Waste Manage. Assoc. 51, 78-85.
Metcalf and Eddy (1991). Wastewater Engineering: Treatment, Disposal and Reuse, 3rd ed., Revised by Tchobanoglous, G. and Burton, F., McGraw-Hill, New York.
Namkung, B.E. and Rittmann, B. E. (1987). Estimating Volatile Organic Compound Emissions from A Publicly•Owned Treatment Work, J. Water Pollut. Control Fed. 59: 670-678.
Ottengraf, S.P.P. (1986). Exhaust Gas Purification. Rehn, H.J. and Reed, G., Eds.; VCH Verlagsgesellschaft, Weinham, Germany, Biotechnology; Vol. 8 p. 425-452.
Perry, R.H.; Green D.W. Perry’s Chemical Engineers’ Handbook, 7th ed.; McGraw-Hill: New York 1997.
Shareefdeen, Z.; Baltzis, B.C.; Oh, Y.; Bartha, R. (1993) Biofiltration of Methanol Vapor; Biotechnol. Bioeng. 41, 512-524.
Staudinger, J. and Roberts, P.V. (1996). A Critical Review of Henry''s Law Constants for Environmental Applications. Crit. Rev. Environ. Sci. Technol. 26:205-297.
Webster, T.S. Odor Removal in Municipal Wastewater Treatment Plants – Case Studies, in Shareefdeen, Z and Singh, A (eds.) Biotechnology for Odor and Air Pollution Control, p. 330; Springer 2005, Heidelberg, Germany.
Williams, T.O.; Miller, F.C. Odor Control Using Biofilters: Part 1; Biocycle 1992, Oct., 73-77.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔