跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/09 17:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃郁仁
研究生(外文):Yu-jen Huang
論文名稱:鐵氧磁體程序處理工業廢水之應用及其觸媒性質研究
論文名稱(外文):The Application of Ferrite Process on Industrial Wastewater Treatment and the Catalysis of Ferrospinels
指導教授:樓基中樓基中引用關係
指導教授(外文):Jie-Chung Lou
學位類別:博士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:189
中文關鍵詞:印刷電路板業Fenton程序鐵氧磁體程序觸媒焚化技術X光繞射分析儀鄰-二甲苯超導量子干涉儀掃瞄式電子顯微鏡
外文關鍵詞:PCB industrySEMXRDcatalytic incinerationFerrite ProcessFenton methodSQUIDo-xylene
相關次數:
  • 被引用被引用:9
  • 點閱點閱:400
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
工業廢水中經常夾雜許多種類之有機物與重金屬物質,這些污染物若未妥善處理,除了會對人體造成危害之外,亦會對環境造成相當程度之影響。而由於印刷電路板業製程繁複,在製造過程中使用各種化學藥劑及特殊原料,故其廢水則為典型含有機物及重金屬廢水之一。本研究則實際採集印刷電路板製造業所產生之混合廢水,結合Fenton程序及鐵氧磁體程序進行串聯處理(Fenton-Ferrite Process, FFP),並將經由此程序所產生之污泥進行資源化研究。藉由此研究,除了可有效的處理同時含有機物與重金屬廢水之外,針對其所生成污泥部份亦可提供一資源再利用之方向。

於研究之初,首先為確實瞭解印刷電路板業所產生之廢水特性,故實際前往南部某印刷電路板工廠進行採樣,並於實驗室進行相關之物理化學分析,以得知其各種污染物之濃度,之後再利用FFP程序處理此種廢水。

在FFP最佳操作參數之研究可發現,Fenton程序其最佳之操作條件為pH = 2、[Fe2+]= 500 mg/L、[H2O2]= 3000 mg/L、反應時間= 60 min、加藥方式為批次式加藥。實廠廢水(COD為406 mg/L,TOC為134 mg/L)於此條件下之處理結果為COD為84.9 mg/L、TOC則為58.3 mg/L,且COD已經符合放流水標準120 mg/L。而在鐵氧磁體程序處理廢水中重金屬結果則指出其最佳操作參數為pH= 10、反應溫度= 80℃、反應時間= 40 min、曝氣量為3 L/min/每升廢水、Fe/Cu莫耳比= 10、三段式反應。於此操作條件下處理過後之廢水其Cu濃度為0.18 mg/L,而所生成之污泥之TCLP溶出濃度則為4.58 mg/L,均遠低於法規標準。

另外,更進一步對所生成之污泥進行性質分析。X光繞射分析儀(X-Ray Diffractometer, XRD)圖譜指出所生成之污泥以Fe3O4與CuFe2O4為主;而掃瞄式電子顯微鏡(Scanning Electron Microscope, SEM)照片顯示,經FFP程序所產生之污泥外觀呈球狀,粒徑範圍約為50 nm~100 nm;此外,利用超導量子干涉儀(Superconducting Quantum Interference Device, SQUID)量測污泥之磁性,經測試結果得知其飽和磁化量為62.85 emu/g。

而在鐵氧磁體污泥應用於觸媒之研究上,於設定之反應條件下且反應溫度為400 ℃時,鄰-二甲苯即有約97%的轉化率,而石英砂則僅有31%的轉化率。此外,於72小時之衰敗試驗中,觸媒並未出現明顯衰敗情況,且生成之產物為CO2。故此結果顯示鐵氧磁體尖晶石污泥具極佳的觸媒潛能。
本研究亦自行配製模擬廢水以合成不同生成條件及不同金屬系之鐵氧磁體。經由觸媒活性篩選試驗後,可初步將四種不同活性金屬觸媒對鄰-二甲苯之催化能力排序為Cu-ferrite>Mn-ferrite>ferrite≒Zn-ferrite,且可得知於pH= 9,T= 90 ℃下製備之Cu-ferrite觸媒效果最佳,且經試驗後亦並未出現衰敗情形。在Cu-ferrite性質分析結果方面,XRD圖譜指出其結構以CuFe2O4為主;而由SEM照片可發現使用前及使用後之Cu-ferrite觸媒表面結構並無明顯變化之之情形,且粒徑範圍約為50 nm~100 nm;此外,利用SQUID量測其磁性,經測試結果得知其飽和磁化量為30.89 emu/g。
In industrial wastewater, there are usually many kinds of organics and heavy metals and can cause damage on human health and environment without well treatment. Printed Circuit Board (PCB) industrial wastewater is a typical example due to the complicated manufacture processes and the use of specific chemicals. In this study, the PCB industrial wastewater is collected and then treated by the combination of Fenton method and Ferrite Process (or called Fenton-Ferrite Process, FFP). Moreover, the recycling possibility of sludge generated from FFP is also studied. Through this study, the treatment procedure of wastewater containing organics heavy metals is established and the direction of sludge reuse is also provided.
To realize the characteristic of PCB industrial wastewater, the wastewater from some PCB factory in southern Taiwan was firstly collected and analyzed to identify the pollution concentrations and then treated by FFP. The experimental results showed that the optimum parameters of Fenton method in FFP were pH = 2, [Fe2+]= 500 mg/L, [H2O2]= 3000 mg/L, reaction time= 60 min and batch dosing, and the residual COD and TOC were 84.9 mg/L and 58.3 mg/L under the COD regulation standard 120 mg/L. Meanwhile, the proper conditions of Ferrite Process in FFP were pH= 10, reaction temperature= 80℃, reaction time= 40 min, aeration rate= 3 L/min/L wastewater, Fe/Cu molar ratio= 10 and three-stage reaction. Under that circumstance, the residual [Cu2+] in wastewater was 0.18 mg/L and the Toxicity Characteristic Leaching Procedure (TCLP) test of sludge from FFP was 4.58 far below the effluent standard 3 mg/L and TCLP standard 15 mg/L.
The properties of sludge were further investigated by X-Ray Diffractometer (XRD), Scanning Electron Microscope (SEM) and Superconducting Quantum Interference Device (SQUID). The pattern of XRD indicated that the major structures were Fe3O4 and CuFe2O4; the figure of SEM showed that the surface of sludge was composed of many round particles and the distribution of particle size was from 50 nm-100 nm; the magnetic property analyzed by SQUID showed that the saturation moment was 62.85 emu/g.
In the research of sludge applied in catalytic incineration, the o-xylene conversion was 97 % by sludge but only 31 % by quartz sand at 400 ℃. Moreover, in the 72 hr-decay test of catalyst, the results clearly indicated that the performance did not obviously decline and there were no any byproducts but CO2. Therefore, the investigation revealed that the sludge had great potential in catalytic reaction.
The catalytic performance of various ferrospinels generated from different manufactured conditions was also studied. Through the screening of catalysts, the order of various ferrospinels activity was Cu-ferrite > Mn-ferrite > ferrite ≒ Zn-ferrite and the most effective Cu-ferrite was manufactured at pH= 9 and T= 90 ℃. After 72 hr test, the decay of catalyst was not also found. In the examination of Cu-ferrite physical property, the XRD pattern showed that the structure was CuFe2O4; the figure of SEM illustrated that there was no difference between the surface of fresh and used catalyst; the magnetic property measured by SQUID showed that the saturation moment was 30.89 emu/g.
目 錄

頁數
摘 要 Ⅰ
Abstract Ⅳ
目 錄 Ⅵ
表目錄 XI
圖目錄 XII
第一章 序論 1-1
1-1 研究緣起 1-1
1-2 研究目的及內容 1-4
第二章 文獻回顧 2-1
2-1 印刷電路板業簡介 2-1
2-1-1 印刷電路板產業 2-1
2-1-2 印刷電路板業製程 2-2
2-1-3 印刷電路板業廢水來源及特性 2-5
2-2 常見工業廢水處理方法 2-10
2-2-1 含有機物廢水處理方法 2-10
2-2-2 含重金屬廢水處理方法 2-10
2-3 Fenton程序原理與影響因素 2-14
2-3-1 Fenton之氧化原理 2-14
2-3-2 Fenton之影響因素 2-16
2-3-3 Fenton之相關研究 2-19
2-4 鐵氧磁體程序 2-21
2-4-1 鐵氧磁體基本性質及結構 2-21
2-4-2 鐵氧磁體合成方法 2-24
2-4-3 鐵氧磁體程序反應機構 2-27
2-4-4 鐵氧磁體程序影響因子 2-30
2-4-5 鐵氧磁體程序相關研究 2-33
2-5 鐵氧磁體應用與觸媒焚化技術 2-37
2-5-1 揮發性有機物 2-37
2-5-2 二甲苯簡介 2-38
2-5-3 觸媒焚化技術 2-39
2-5-4 鐵氧磁體觸媒 2-40
第三章 研究方法及步驟 3-1
3-1 研究架構及實驗流程 3-1
3-1-1 研究架構 3-1
3-1-2 實驗流程 3-2
3-2 實驗方法與操作條件 3-6
3-2-1 印刷電路板廢水基本特性分析 3-6
3-2-2 Fenton程序操作參數設計 3-7
3-2-3 鐵氧磁體程序操作參數設計 3-10
3-2-4 鐵氧磁體觸媒催化效能研究 3-13
3-3 實驗設備 3-16
3-3-1 Fenton/鐵氧磁體程序設備 3-16
3-3-2 觸媒催化鄰-二甲苯反應設備 3-18
3-3-2-1 鄰-二甲苯模擬設備 3-18
3-3-2-2 觸媒反應設備 3-18
3-3-2-3 產物採樣分析設備 3-21
3-4 實驗藥品 3-22
3-5 其他分析儀器 3-24
第四章 結果與討論 4-1
4-1 印刷電路板廢水水質分析結果 4-1
4-2 Fenton程序處理廢水中有機物之操作條件 4-2
4-2-1 pH值對Fenton程序之影響 4-3
4-2-2 亞鐵離子加藥量對Fenton程序之影響 4-6
4-2-3 過氧化氫加藥量對Fenton程序之影響 4-8
4-2-4 反應時間及過氧化氫加藥方式對Fenton程序之影響 4-10
4-3 鐵氧磁體程序處理廢水中重金屬之操作條件 4-14
4-3-1 pH值對鐵氧磁體程序之影響 4-15
4-3-2 反應溫度對鐵氧磁體程序之影響 4-18
4-3-3 曝氣量對鐵氧磁體程序之影響 4-21
4-3-4 Fe/Cu莫耳比之影響 4-25
4-4 鐵氧磁體污泥性質分析 4-34
4-4-1 XRD圖譜鑑定 4-34
4-4-2 SEM/EDS分析結果 4-34
4-4-3 鐵氧磁體污泥磁性量測結果及應用探討 4-37
4-4-4 鐵氧磁體污泥粒徑分佈 4-38
4-5 鐵氧磁體污泥觸媒效能測試 4-41
4-5-1 空白試驗 4-41
4-5-2 鄰-二甲苯進流濃度效應 4-43
4-5-3 空間流速效應 4-45
4-5-4 氧氣含量效應 4-47
4-5-5 二氧化碳產率 4-47
4-5-6 鐵氧磁體污泥長時間衰退試驗 4-50
4-6 不同金屬系鐵氧磁體觸媒效能測試 4-52
4-6-1 觸媒之製備條件 4-52
4-6-2 觸媒活性篩選 4-52
4-6-3 鄰-二甲苯進流濃度效應 4-59
4-6-4 空間流速效應 4-59
4-6-5 氧氣含量效應 4-62
4-6-6 二氧化碳產率 4-62
4-6-7 長時間衰退試驗 4-62
4-6-8 XRD圖譜鑑定 4-66
4-6-9 SEM/EDS分析結果 4-66
4-6-10 磁性量測結果 4-66
4-7 鐵氧磁體污泥與Cu-ferrite觸媒催化能力之比較 4-71
4-8 Fenton /鐵氧磁體程序串聯處理廢水效益探討 4-73
4-8-1 Fenton /鐵氧磁體程序操作參數與處理成效 4-73
4-8-2 Fenton /鐵氧磁體程序成本效益評估 4-75
第五章 結論與建議 5-1
5-1 結論 5-1
5-1-1 印刷電路板廢水水質分析結果 5-1
5-1-2 Fenton/鐵氧磁體程序處理廢水成效 5-1
5-1-3 鐵氧磁體污泥觸媒效能測試結果 5-2
5-1-4 不同金屬系鐵氧磁體觸媒測試結果 5-3
5-1-5 鐵氧磁體污泥與Cu-ferrite觸媒催化能力之比較 5-4
5-1-4 Fenton/鐵氧磁體程序串聯處理廢水效益探討 5-5
5-2 建議 5-6
參考文獻 參-1
表 目 錄

表2-1 電路板製程單元使用物料及定期排棄槽液污染特性 2-6
表2-2 電路板工廠廢水、廢液分類原則及處理方式 2-9
表2-3 有機污染廢水處理方法之比較表 2-11
表2-4 放流水之重金屬排放標準 2-12
表2-5 重金屬廢水處理方法之比較表 2-13
表2-6 以Fenton程序處理有機污染物之相關文獻 2-19
表2-7 尖晶石型鐵氧磁體可包含之金屬種類 2-22
表2-8 鐵氧磁體化法影響因子之相關文獻 2-33
表2-9 鐵氧磁體觸媒應用文獻彙整 2-41
表3-1 Fenton程序操作參數 3-8
表3-2 鐵氧磁體程序操作參數 3-12
表3-3 模擬廢水合成之鐵氧磁體設計參數 3-15
表4-1 印刷電路板廢水水質分析結果 4-1
表4-2 鐵氧磁體污泥EDS分析結果 4-36
表4-3 不同鐵氧磁體之結構與磁性 4-38
表4-4 不同金屬系鐵氧磁體觸媒之最佳生成條件 4-58
表4-5 Cu-ferrite觸媒EDS分析結果 4-69
表4-6 Fenton /鐵氧磁體程序操作條件 4-74
表4-7 Fenton /鐵氧磁體程序處理成效 4-74
表4-8 Fenton /鐵氧磁體程序成本效益評估 4-76



圖 目 錄

圖2-1 電路板種類及用途 2-2
圖2-2 印刷電路板典型多層板製造流程 2-4
圖2-3 鐵氧磁體尖晶石結構 2-23
圖2-4 形成鐵氧磁體之氧化條件 2-26
圖3-1 整體研究流程圖 3-3
圖3-2 Fenton/鐵氧磁體程序流程圖 3-4
圖3-3 鐵氧磁體污泥觸媒催化反應流程圖 3-5
圖3-4 Fenton/鐵氧磁體程序設備圖 3-17
圖3-5 觸媒催化鄰-二甲苯反應設備圖 3-5
圖4-1 pH值對COD去除效率之影響 4-5
圖4-2 亞鐵濃度對COD去除效率之影響 4-7
圖4-3 H2O2濃度對COD去除效率之影響 4-9
圖4-4 反應時間與加藥方式對COD去除效率之影響 4-12
圖4-5 反應時間對H2O2殘餘值之影響 4-13
圖4-6 鐵氧磁體程序中不同pH值對廢水之處理效果 4-16
圖4-7 鐵氧磁體程序中不同pH值對污泥TCLP試驗結果 4-17
圖4-8 鐵氧磁體程序中不同反應溫度對廢水之處理效果 4-19
圖4-9 鐵氧磁體程序中不同反應溫度對污泥TCLP試驗結果 4-20
圖4-10 鐵氧磁體程序中不同曝氣量對廢水之處理效果 4-23
圖4-11 鐵氧磁體程序中曝氣量對污泥TCLP試驗結果 4-24
圖4-12 鐵氧磁體程序中不同Fe/M對廢水之處理效果(1段式) 4-28
圖4-13 鐵氧磁體程序中不同Fe/M對污泥TCLP試驗結果(1段式) 4-29
圖4-14 鐵氧磁體程序中不同Fe/M對廢水之處理效果(2段式) 4-30
圖4-15 鐵氧磁體程序中不同Fe/M對污泥TCLP試驗結果(2段式) 4-31
圖4-16 鐵氧磁體程序中不同Fe/M對廢水之處理效果(3段式) 4-32
圖4-17 鐵氧磁體程序中不同Fe/M對污泥TCLP試驗結果(3段式) 4-33
圖4-18 鐵氧磁體污泥XRD分析圖譜 4-35
圖4-19 鐵氧磁體污泥SEM圖 4-36
圖4-20 鐵氧磁體污泥M-H曲線圖 4-39
圖4-21 鐵氧磁體污泥粒徑分佈圖 4-40
圖4-22 鐵氧磁體污泥觸媒效能測試 4-42
圖4-23 不同進流濃度對鄰-二甲苯轉化率之影響 4-44
圖4-24 不同空間流速對鄰-二甲苯轉化率之影響 4-46
圖4-25 不同氧氣濃度對鄰-二甲苯轉化率之影響 4-48
圖4-26 鄰-二甲苯降解率與CO2產率之關係 4-49
圖4-27 鐵氧磁體污泥長時間衰退試驗 4-51
圖4-28 不同ferrite對鄰-二甲苯轉化率之影響 4-53
圖4-29 不同Cu-ferrite對鄰-二甲苯轉化率之影響 4-54
圖4-30 不同Mn-ferrite對鄰-二甲苯轉化率之影響 4-55
圖4-31 不同Zn-ferrite對鄰-二甲苯轉化率之影響 4-56
圖4-32 不同進流濃度對鄰-二甲苯轉化率之影響 4-60
圖4-33 不同空間流速對鄰-二甲苯轉化率之影響 4-61
圖4-34 不同氧氣濃度對鄰-二甲苯轉化率之影響 4-63
圖4-35 鄰-二甲苯降解率與CO2產率之關係 4-64
圖4-36 Cu-ferrite長時間衰退試驗 4-65
圖4-37 鐵氧磁體污泥XRD分析圖譜 4-67
圖4-38 Cu-ferrite SEM圖 4-68
圖4-39 Cu-ferrite M-H曲線圖 4-70
圖4-40 鐵氧磁體污泥與Cu-ferrite觸媒催化性能比較 4-72
中文文獻
工業技術研究院,由下游資通訊產品看電路板及原物料市場趨勢,pp.2-5 - 2-6,2003。
王月鳳,重金屬離子之鐵氧磁體化研究,成功大學碩士論文,1995。
王能誠,二氧化碳還原用鐵氧磁體觸媒之製備及其特性研究,成功大學博士論文,2002。
台灣電路板協會,印刷電路板概論.養成篇,pp. 37,2005。
朱昱學,改善電路板工廠廢水處理系統降低處理成本,工業污染防治報導,第150期,p. 17-20,2000。
行政院環保署,「放流水標準」,2007。
吳在賢、蔡敏行等,電鍍廢水Ferrite化處理之研究,國科會專題研究計劃研究報告,1992。
吳海山,鐵氧磁體化法處理不�袗�酸洗廢水,成功大學碩士論文,1998。
吳榮宗,工業觸媒概論,黎明書店,1989。
宋宏凱,電鍍廢水鐵氧磁體化及其安定性之研究,成功大學碩士論文,1993。
汪建民,陶瓷技術手冊,中華民國粉末冶金協會,1994。
李尚璋, Fenton法氧化TCE DNAPL之探討,屏東科技大學碩士論文,1999。
林正雄,鐵氧體軟磁材料,磁性技術手冊,pp. 133-158,2002。
金重勳,軟磁技術簡介,實用磁性材料,pp. 117-132,2002。
邵國書、陳松璧、劉騰凌、吳健、陳曉旼,印刷電路板工廠廢水改善實例介紹,工業污染防治,第21期,pp. 171-181,1987。
唐敏注,通訊用軟磁材料之特性及應用,工業材料,105,pp. 42-50,1995。
涂耀仁,以多段式磁鐵化法處理重金屬系實驗室廢液,中山大學碩士論文,2002。
張健桂,以鐵氧磁體程序處理含重金屬實驗室廢液之研究,中山大學碩士論文,2002。
張博荀, H2O2/Fe2+化學氧化法處理反應性染料-Black B之研究,成功大學碩士論文,2004。
陳文泉,重金屬廢水鐵氧磁體法處理之基礎研究,成功大學碩士論文,1992。
黃契儒,電鍍廢水鐵氧磁體化及前處理研究,成功大學碩士論文,1993。
黃智恆,添加Cu-ferrite或Co-ferrite於燒結Fe3O4鐵氧磁體之磁阻研究,臺灣大學碩士論文,2000。
黃鈺軫、杜秋慧、宮敏、林忠義、林傳倫、張景順,實驗室重金屬廢液鐵氧磁體化法處理之研究,第二十八屆廢水處理技術研討會,2003。
奧田胤明,石原敏夫,フエライト法による重金屬廢水の處理,NEC技報,Vol.37,No.9,1984。
經濟部工業局,印刷電路板業環保工安整合性技術手冊,2000。
經濟部工業局,印刷電路板製造業廢水污染防治技術,1995。
經濟部工業局,印刷電路板製造業廢棄物資源化,1996。
潘俊宏,錳鋅鐵氧磁體應用於二氧化碳甲烷化之研究,成功大學碩士論文,民國93 年。
蔡宏志, Photo-Fenton法處理反應性偶氮染料Black B與酚之研究,成功大學碩士論文,2005。
鄭武輝、廖錦聰,簡介鐵氧磁體,工業技術,27,pp. 24-32,1976。
鄭振東,易磁化的磁性材料-磁蕊材料,實用磁性材料,頁3-1~3-10,1999。
鄧婉妤,以Fenton法結合Ferrite Process處理含EDTA與重金屬之廢水,中山大學碩士論文,2004。
鍾朝琴,利用費頓試劑來氧化甲基藍染料之可行性及動力學的研究,高雄師範大學碩士論文,2002。

Referrences
Aldershof B. K., Dennis R. M. and Kunitsky C. J., Study of decomposition of four commercially available hydrogen peroxide solutions by Fenton''s Reagent, Waer Environment Research, 69(5), 1052-1059, 1997
Badawy M.I., Ali M.E.M., Fenton’s peroxidation and coagulation processes for the treatment of combined industrial and domestic wastewater, Journal of Hazardous Materials, B136, 961-966, 2006
Barrado E., Prieto F., Vega M. and Fernandez-polanco F., Optimization of the operational variables of a medium-scale reactor for metal-containing wastewater purification by ferrite formation, Water Research, 32(10), 3055-3061, 1998.
Bautista P., Mohedano A.F., Gilarranz M.A., Casas J.A., Rodriguez J.J., Application of Fenton oxidation to cosmetic wastewaters treatment, Journal of Hazardous Materials, 143, 128-134, 2007.
Benite F. J., Acero J. L., Real F. J. and Leal A. I., The role of hydroxyl radicals for the decomposition of p-Hydroxy phenylacetic acid in aqueous solutions, Water Research., 35(5), 1338-1343, 2001
Carberry, J. B.; Yang S. Y., Enhancement of PCB congener biodegradation by pre-oxidation with Fenton’s reagent”, Langmuir, 10, 3880-3886, 1994.
Chow G. M. and Gonsalves K. E., Nanomaterials: Synthesis, Properties and Applications, A. S. Edelstein and R. C. Cammarata ed., 1996.
Christensen, H., Sehested, K., Corfitzen, H., Reaction of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures, Journal of Physical Chemistry, 86(9), 1588-1590, 1982.
Costa A. C. F. M., Tortella E., Morelli M. R., Kaufman M. and Kiminami R. H. G. A., Effect of heating conditions during combustion synthesis on the characteristics of Ni0.5Zn0.5Fe2O4 nanopowders, Journal of Materials Science, 37, 3569-3572, 2002.
Feitknecht W. and Gallagher K. J., Mechanisms for the oxidation of Fe3O4, Nature, 228, 548-549, 1970.
Feitknecht W., Uber die oxydation von festen hydroxyverbindungen des eisens in wasseringen losungen, Z. Elektrochem. 63, 34–43, 1959
Fenton, H. J. H. , Oxidation of tartaric acid in presence of iron, Journal of Chemical Society, 65, 889-910, 1894.
Gallard H. and Latt J., Kinetic modeling of Fe(Ⅲ)/H2O oxidation reactions in dilute aqueous solution using atrazine as a model organic compound, Water Research, 34(12), 3107-3116, 2000 .
Goldman A., Modern Ferrite Technology, New York: Van Nostrand Reinhold, 21-44, 1990.
Hamada S. and Kuma K., Preparation of γ-FeOOH by aerial oxidation of iron(Ⅱ) chloride solution, Bulletin of the chemical society of Japan, 49(12), 3695-3696, 1976.
Höfl, C., Sigl, G., Specht, O., Wurdack, I. and Wabner, D., Oxidative degradation of AOX and COD by different advanced oxidation processes. A comparative study with two samples of a pharmaceutical wastewater, Water Science Technology, 35, 257-264, 1997.
Hsueh C.L., Huang Y.H., Wang C.C., Chen C.Y., Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system, Chemosphere, 58, 1409, 2005.
Hwang C. S., Wang N. C., Preparation and Characteristics of Ferrite Catalysts for Reduction of CO2, Materials Chemistry and Physics. 88, 258-263, 2004.
Ichinose N., Ozaki Y. and Kashû S., Superfine Particle Technology, Springer-Verlag London Limited, 1992.
James J. S., Complete catalytic oxidation of volatile organics, Industrial Engineering Chemical Research, 26(11), 2165-2180, 1987.
Júnior A.F., Lima E.C.O, Novak M.A., Wells Jr P.R., Synthesis of nanoparticles of CoxFe(3-x)O4 by combustion reaction method, Journal of Magnetism and Magnetic Materials, 308, 198-202, 2007.
Kaneko K., Takei K., Tamaura Y., Kanzaki T. and Katsura T., The formation of the Cd-bearing ferrite by the air oxidation of an aqueous suspension, Bulletin of the chemical society of Japan, 52(4), 1080-1085, 1979.
Kang S. F. and Chang H. M., Coagulation of Textile Secondary Effluents with Fenton’s Reagent, Water Scence Technology, 36(12), 215-222, 1997.
Kang Y. W. and Hwang K. Y., Effect of Reaction Conditions on the Oxidation Efficiency in the Fenton Process, Water Research, 34(10), 2786-2790, 2000.
Kavitha V., Palanivelu K., The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol, Chemosphere, 55, 1235-1243, 2004.
Kim Y. K. and Huh I.. R., Enhancing Biological Treatability of Landfill Leachate by Chemical Oxidation, Environmental Engineering Science, 14(1), 73-79,1997.
Kitis M., Adams C. D. and Daigger G. T., The Effeces of Fenton’s Reagent Pretreatment on the Biodegradability of Nonionic Surfactants, Water Research, 33(11), 2561-2568, 1999.
Kiyama M. and Takada T., The Hydrolysis of ferric complexes. Magnetic and spectrophotometric studies of aqueous solutions of ferric salts, Bulletin of the chemical society of Japan, 46, 1680-1686, 1973.
Kiyama M., Conditions for the formation of Fe3O4 by the air oxidation of Fe(OH)2 suspensions, Bulletin of the chemical society of Japan, 47, 1646-1650, 1974.
Kiyama M., The formation of manganese and cobalt ferrites by the air oxidation of aqueous suspensions and their properties, Bulletin of the chemical society of Japan, 51, 134-138, 1978.
Kodama T., Wada Y., Yamamoto T., Tsuji M. and Tamaura Y., CO2 decomposition to carbon by ultrafine Ni(II)-bearing ferrite at 300℃, Materials Research Bulletin, 30(8), 1039-1048, 1995.
Kuo W. G., Decolorizing dye wastewater with Fenton’s reagent, Water Research, 26(7), 881-886, 1992.
Kušić, H., Božić, A.L., Koprivanac, N., Fenton type processes for minimization of organic content in coloured wastewaters: Part I: Processes optimization, Dyes and Pigments, 74, 380-387, 2007.
LaDou, J., Printed circuit board industry, International Journal of Hygiene and Environmental Health, 209, 211-219, 2006.
Lin S.H., Jiang C.D., Fenton oxidation and sequencing batch reactor (SBR) treatments of high-strength semiconductor wastewater, Desalination, 154, 107-116, 2003.
Lindsey M. E. and Tarr M. A., Quantiation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide, Chemosphere, 41, 409-417, 2000.
Lopez-Delgado A. and Lopez F. A., Synthesis of Nickel-Chromium-Zinc ferrite powders from stainless steel pickling liquors, Journal of Materials Research, 14(8), 3427-3432, 1999.
Lou J.C., Chang C.K., Catalytic oxidation of CO over a catalyst produced in the ferrite process, Environmental Engineering Science, 23(6), 1024-1032, 2006.
Lou J.C., Tu Y.J., Incinerating volatile organic compounds with ferrospinel catalyst MnFe2O4: An example with isopropyl alcohol, Journal of the Air & Waste Management Association, 55(12), 1809-1815, 2005.
Lunar L., Sicilia D., Rubio S., Perez-Bendito D. and Nickel U, Degradation of photographic developers by Fenton reagent: Condition optimization and kinetics for metal oxidation, Water Research, 34(6), 1791-1802, 2000.
Mandaokar S. S., Dharmadhikari D. M., Retrieval of heavy metal ions from dolution via Ferritisation, Environmental Pollution, 83, 277-282, 1994.
Mathew T., Rao B. S., Gopinath C. S., Tertiary Butylation of Phenol on Cu1-xCoxFe2O4: Catalysis and Structure-Activity Correlation, Journal of Catalysis, 222, 107-116, 2004.
McCurrie R. A. Ferromagnetic Materials Structure and Properties, Academic Press Inc., San Diego, 1994.
Moon, D.K., T. Mauyama, K. Osakada, and T. Yamamoto, Chemical oxidation of polyamilime by radical generating reagents, O2, H2O2 FeCl3 catalyst, and dobenzoyl peroxide, Chemistry Letters, 1633-1636,1991.
Okuda T., Removal of Heavy Metals from Wastewater by Ferrite Co-orecioitation, Filtration and Separation, 12(5), 472-478, 1975.
Oliveira I. S., Viana L., Verona C., Fallavena V. V., Azevedo C. M. N., Pires M., Alkydic resin wastewaters treatment by Fenton and Photo-Fenton processes, Journal of Hazardous Materials, 146, 564-568, 2007.
Park T. J., Lee K. H., Jung E. J. and Kim C. W., Removal of Refractory Organic and Color in Pigment Wastewater with Fenton Oxidation, Water Science Technology, 39(10-11), 189-192, 1999.
Pérez M., Torrades F., Domènech X., Peral J., Fenton and photo-Fenton oxidation of textile effluents, Water Research, 36, 2703-2710, 2002.
Perez O. P. and Yoshiaki., ORP-monitored magnetite formation from aqueous solutions at low temperatures, Hydrometallurgy, 55, 35-56, 2000.
Perez O. P., Umetsu Y. and Sasaki H., Precipitation and densification of magnetic iron compounds from aqueous Sslution at room temperature, Hydrometallurgy, 50, 223-242, 1998.
Pope D., Walker D. S., Moss R. L. Evaluation of Cobalt Oxide Catalysts for the Oxidation of Low Concentration of Organic Compounds, Atmospheric Environment. Vol. 10, No. 6, 951-956. 1976.
Radian C. Control Techniques for Volatile Organic Emission from Stationary Source, USEPA, EPA-450/2-78-022. 1978.
Ritter J. J. and Maruthamuthu P., Synthesis of NiFe2O4 by a Metal-organo Method, Journal of Materials Synthesis and Processing, 3(5), 331-337, 1995.
Rodr J., Contreras D., Parra C., Freer J., Baeza J. and Dur N., Pulp mill effluent treatment by Fenton type reactions catalyzed by iron complexes, Water Science Technolgy, 40(11), 351-355, 1999.
Schrank S.G., José H.J., Moreira R.F.P.M., Schröder H.Fr., Applicability of Fenton and H2O2/UV reactions in the treatment of tannery wastewaters, Chemosphere, 60, 644-655, 2005.
Sellers R. M., Spectrophotometric determination of hydrogen peroxide using potassium (Ⅳ) oxalate, Analyst, 105, 950-954, 1980.
Sheng H. L., Chi M. L., Horng G. L., Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation, Water Research, 33(7), 1735-1741, 1999.
Spivey J. J., Complete Catalytic Oxidation of Volatile Organics, Industrial & Engineering Chemistry Research, 26, 2165-2180. 1987.
Sreekumar K. and Sugunan. S., Ferrospinels based on Co and Ni prepared via a low temperature route as efficient catalysts for the selective synthesis of o-cresol and 2,6-xylenol from phenol and methanol, Journal of Molecular Catalysis A: Chemical, 185, 259-268, 2002.
Sreekumar K., Mathew T., Mirajkar S. P., Sugunan S., Rao B. S., A comparative study on aniline alkylation activity using methanol and dimethyl carbonate as the alkylating agents over Zn-Co-Fe ternary spinel systems, Applied Catalysis A: General, 201, L1-L8, 2000.
Swaminathan K, Sandhya S, Caramlin Sophia A, Pachhade K, Subrahmanyam YV., Decolorization and degradation of H-acid and other dyes using ferrousehydrogen peroxide system, Chemosphere, 50, 619-625, 2003.
Talinli I. and Anderson G. K., Interference of hydrogon peroxide on the standard COD test, Water. Research, 26(1), 107-110, 1992.
Tamaura Y., Katsura T., Rojarayanont S., Yoshida T. and Abe H., Ferrite process: Heavy Metal Ions Treatment System, Water Science and Technology, 23, 1893-1900, 1991a.
Tamaura Y., Tu P. Q., Rojarayanont S. and Abe H., Stabilization of hazardous materials into ferrites. Water Science and Technology, 23, 399-404, 1991b.
Tao S., Gao F., Liu X. and Sorensen O. T., Preparation and gas sensing properties of CuFe2O4 at reduced temperature, Materials Science and Engineering B: Solid-state Materials for Advanced Technology, 77, 172-176, 2000.
Tsuji M., Kodama T., Yoshida T., Kitayama Y. and Tamaura Y., Preparation and CO2 methanation activity of an ultrafine Ni(II) ferrite catalyst, Journal of Catalysis, 164, 315-321, 1996.
Walling C. and Kato S., The oxidation of alcohols by Fenton’s reagent: the effect of copper ion, Journal of the American Chemical Society, 93, 4275-4281, 1971.
Walling, C., and Goosen, A., Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide: Effect of organic substrates, Journal of the American Chemical Society, 95, 2987–2991, 1973.
Xia Y., Armstrong T., Prado F. and Manthiram A., Sol-gel synthesis, phase relationships and oxygen permeation properties of Sr4Fe6-xCoxO13+δ(0≦x≦3), Solid State Ionics, 130, 81-90, 2000.
Xu X.R., Li H.B., Wang W.H., Gu J.D., Degradation of dyes in aqueous solutions by the Fenton process, Chemosphere, 57, 595-600, 2004.
Yamanobe Y., Yamaguchi K., Matsumoto K. and Fuji T., Magnetic properties of sodium-modified iron-oxide powders synthesized by sol-gel Method, Japanese Journal of Applied Physics, 30(3), 478-483, 1991.
Yang J., Peng J., Guo R., Liu K., Jia J. and Xu D., Optimization and thermodynamic assessment of ferrite (Fe3O4) synthesis in simulated wastewater, Journal of Hazardous Materials, 149, 106-114, 2007.
Yang J., Peng J., Liu K., Guo R., Xu D. and Jia J., Synthesis of ferrites obtained from heavy metal solutions using wet method, Journal of Hazardous Materials, 143, 379-385, 2007.
Yeh, C. K. and Novak J. T., The effect of hydrogen peroxide on the degradation of methyl and ethyl tert-butyl ether in soils, Water Environment Research, 67(5), 828-834,1995.
Zhou R. X., Jiang X. Y., Mao J. X., Zheng X. M., Oxidation of carbon monoxide catalyzed by copper-zirconium composite oxides, Applied Catalyst A: General, 162, 213-222, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top