跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 07:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭育嘉
研究生(外文):Yu-chia Kuo
論文名稱:以釋氧化劑物質處理受石油碳氫化合物污染之地下水
論文名稱(外文):Slowly released, persulfate, methyl tertiary-butyl ether(MTBE), benzene, in-situ oxidative wall
指導教授:高志明高志明引用關係
指導教授(外文):Chih-Ming Kao
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:112
中文關鍵詞:甲基第三丁基醚釋氧化劑物質過硫酸鹽現地化學氧化
外文關鍵詞:persulfateslowly releasedbenzenein-situ oxidative wallmethyl tertiary-butyl ether(MTBE)
相關次數:
  • 被引用被引用:13
  • 點閱點閱:621
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
加油站及大型儲油槽的管線設備多設置於地表層下,隨著設備老舊、地震、施工不良或其他人為因素,洩漏機會隨之增加。油品經地下水的流動及傳導,會逐漸造成油品污染範圍之擴大,嚴重影響附近環境及居民使用之地下水水質,因此控制污染邊緣區刻不容緩。地下水被汽油等石油碳氫化合物所污染是一個愈趨普遍且嚴重的問題,添加在汽油中的含氧物質種類繁多,其目的為代替鉛以提高辛烷值,避免空氣污染。甲基第三丁基醚(methyl tertiary-butyl ether, MTBE)是目前含氧添加劑中應用最為廣泛的一種化合物,而汽油中的主要成分之ㄧ的苯(benzene)亦是大家所關切的致癌物。本研究目的即為研究發展過硫酸鹽氧化法結合含有緩慢釋放氧化劑物質之現地化學氧化反應牆處理現地受石油碳氫化合物(以MTBE及benzene為目標污染物)所污染之地下水。研究中主要包含釋氧化劑物質設計及管柱試驗,首先設計釋氧化劑物質合成,將氧化劑過硫酸鈉與過硫酸鉀進行合成,並研究其組成及釋放效率,以利用它長期釋放氧化劑,其結果可作為後續管柱試驗之設計參考。管柱試驗模擬設計共5隻管柱,管柱1代表地下水污染上游、管柱2代表整治井而管柱3至管柱5代表地下水下游,其結果用來評估利用過硫酸鹽現地整治受MTBE及benzene污染地下水之可行性。實驗結果顯示,水泥及水為影響氧化劑釋放之主要因子;過硫酸鈉累積釋放量最大且持續釋放最持久之比例為1.4:0:0.7(水泥:砂:水),其單位克之釋氧化劑物質的釋放速率k為0.47,此配比可於模擬整治場址之管柱試驗中維持足夠濃度之過硫酸鹽,確保其於1個月內之氧化能力。在管柱之污染降解試驗中,污染物MTBE及benzene平均處理效率分別為98%及99%,不論MTBE或benzene於管柱3至管柱5反應區之濃度皆較管柱2釋放區降解效率佳,此與過硫酸鹽及硫酸根自由基氧化能力持續與有機物反應相關;另外管柱試驗出流水於37.9 pore volume(PV)時,污染物降解效率逐漸遲緩的原因,除過硫酸鹽釋出濃度逐漸降低外,亞鐵離子與硫酸根離子互相競爭,也是污染物降解效率降低原因之ㄧ。水質參數導電度及氧化還原電位(oxidation reduction potential, ORP)趨勢變化與殘餘過硫酸鹽及硫酸鹽一致,其中ORP維持755 mV左右,此時MTBE及benzene皆可有效被降解,因此 ORP可做為現地氧化劑氧化能力評估之重要指標。由於水泥中之氫氧化鈣Ca(OH)2會溶於水中提高水中氫氧根離子(OH-)形成緩衝,因此反應環境並無法立即成為強酸環境。未來在考量成本及效能上,釋氧化劑整治牆極具競爭力,但目前仍缺乏實際應用案例,未來將朝模場或實場應用,以加強該技術之應用性。
Contamination of soil/groundwater supplies by gasoline and other petroleum-derived hydrocarbons released from underground storage tanks (USTs) is a serious and widespread environmental problem. Corrosion, ground movement, and poor sealing can cause leaks in tanks and associated piping. Petroleum hydrocarbons contain methyl tertiary-butyl ether (MTBE) (a fuel oxygenate), benzene, toluene, ethylbenzene, and xylene isomers (BTEX), the major components of gasoline, which are hazardous substances regulated by many nations.The objective of this proposed study is to assess the potential of using a passive in situ oxidation barrier system. This passive active barrier system has advantages over conventional systems including less maintenance, cost-effectiveness, no above-ground facilities, no groundwater pumping and reinjection, and groundwater remediation in situ. The oxidation barrier system included a persulfate-releasing barrier, which contains persulfate-releasing materials. The slow-released persulfate would oxidize MTBE and benzene in aquifer. The persulfate-releasing materials would release persulfate when contacts with groundwater, thus oxidizes the MTBE and benzene. In the first part of this study, bench scale experiment was also performed to produce the persulfate-releasing materials high persulfate-releasing rate. The components of the persulfate-releasing materials and optimal concentrations of those components were determined in this study. Results indicate that the highest persulfate releasing rate can be obtained when the mass ratio of cement/sand/water was 1.4/0/0.7. Result obtained from the persulfate-releasing materials test and bench-scale were used for the design and operation of the following column experiments. Results from the column experiment indicate that approximately 98% of MTBE and 99% of benzene could be removed during the early persulfate-releasing stage. Results also reveal that the produced oxidation byproducts of MTBE, tert-butyl formate (TBF) and tert-butyl alcohol (TBA), can also be produce an acetone. Results from this study suggest that extra Fe(II) would cause the decrease in oxidation rates due to the reaction of sulfate with Fe(II). Results show that the parameters, which would affect the oxidation rate include persulfate concentration, oxidant reduction potential (ORP), conductivity, sulfate concentration, and contaminant concentration. The proposed treatment scheme would be expected to provide a more cost-effective alternative to remediate MTBE and other petroleum-hydrocarbon contaminated aquifers. Knowledge obtained from this study will aid in designing a persulfate oxidation system for site remediation.
目錄
謝誌 I
摘要 II
Abstract IV
目錄 VI
圖目錄 X
表目錄 XI
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 3
2.1土壤及地下水油品污染概況 3
2.1.1 MTBE與benzene之污染概述 4
2.1.2 MTBE與benzene用途 5
2.1.3 MTBE與benzene之相關規定與管制標準 8
2.2土壤及地下水化學整治技術發展趨勢 11
2.2.1現地化學氧化法 11
2.2.2透水性反應牆 13
2.3過硫酸鹽化學及活化機制 17
2.3.1過硫酸鹽之化學介紹 18
2.3.2過硫酸鹽與其他氧化試劑之反應比較 23
2.3.3活化過硫酸鹽反應 28
2.3.3.1過硫酸鹽之光解 29
2.3.3.2溫度的影響 29
2.3.3.3 pH的影響 29
2.3.3.4金屬催化的影響 30
2.3.3.5陰離子的影響 31
第三章 實驗方法與步驟 33
3.1實驗材料 33
3.1.1實驗藥品 33
3.2.2實驗器材 34
3.2.2.1實驗儀器 34
3.2.2.2實驗架構與流程 35
3.2.2.3實驗用水 36
3.2.2.4供試土來源 36
3.2.2.5地下水來源 39
3.2.2.6水泥來源 39
3.3釋過硫酸鹽物質組成及合成 39
3.4 釋氧化劑組成成份迴歸分析 41
3.5管柱實驗 42
3.5.1污染物濃度累積試驗 42
3.5.2釋過硫酸鹽物質管柱試驗 42
3.5.3污染物與副產物分析 43
3.5.4污染物統計相關分析 45
3.5.5水質分析 45
3.5.5.1氫離子濃度指數分析 45
3.5.5.2氧化還原分析 46
3.5.5.3導電度分析 46
3.5.5.4過硫酸根分析 46
3.5.5.5硫酸鹽分析 46
3.5.5.6亞鐵分析 47
3.5.5.7總鐵分析 47
3.5.6 X光繞射儀分析 47
3.5.7掃描式電子顯微鏡分析 48
第四章 結果與討論 49
4.1釋氧化劑物質釋放過硫酸鹽之批次實驗 49
4.1.1 比較不同砂含量對合成物中氧化劑釋出之影響 50
4.1.2比較不同水含量對合成物中氧化劑釋出之影響 51
4.1.3不同砂及水對於過硫酸鹽濃度釋放速率之影響 52
4.1.4 以迴歸分析水泥、砂及水對於過硫酸鹽釋放速度之影響 55
4.1.5釋氧化劑物質在釋放過硫酸過程中之水質參數變化批次實驗 56
4.2管柱試驗 57
4.2.1 地下水、土壤基本性質分析及管柱基本操作參數 58
4.2.2污染物濃度累積試驗 60
4.2.3污染物降解效率評估 63
4.2.4管柱試驗污染物相關分析 66
4.2.5污染物降解副產物評估 67
4.2.6出流水之殘餘過硫酸鹽與其他水質參數之關係 71
4.2.7出流水及時間關係 74
4.2.8供試土壤異相催化 76
4.2.9釋氧化劑物質表面型態比較 79
4.2.10釋氧化劑物質整治牆設計 82
第五章 結論 85
5.1 釋氧化劑物質設計 85
5.2 管柱試驗 85
第六章 建議 88
參考文獻 89


圖目錄
圖2.1整治井示意圖 15
圖2.2整治渠之示意圖 15
圖2.3 funnel-and-gate整治系統之示意圖 15
圖3.1實驗架構流程圖 35
圖3.2 釋過硫酸鹽物質示意圖 40
圖3.3 釋過硫酸鹽物質批次反應槽示意圖 40
圖3.4 連續式反應裝置 43
圖3.5 揮發性有機物之層析圖譜(MTBE & BTEX) 44
圖3.6 揮發性有機物之層析圖譜(TBA & TBF) 44
圖4.1 不同砂含量在不同操作時間下,過硫酸鹽之累積濃度變化 50
圖4.2 不同水含量在不同操作時間下,釋過硫酸鹽之濃度累積變化 52
圖4.3 不同天數之單位克合成物其所釋放過硫酸鹽濃度 55
圖4.4 釋氧化劑物質在不同操作時間水中pH之變動 57
圖4.5 MTBE及benzene於管柱之濃度累積趨勢 62
圖4.6 MTBE及benzene於各管柱中降解濃度變化 65
圖4.7 MTBE於各管柱中降解副產物濃度變化 70
圖4.8 殘留過硫酸鹽與其他水質參數比較 73
圖4.9 管柱2中氫氧化鐵沉澱情形 74
圖4.10 出流水與時間關係圖 75
圖4.11 供試含水層土壤與不同鐵氧礦物之 XRD 比對圖 78
圖4.12 以SEM觀察釋氧化劑物質表面型態 80
圖4.13 以SEM-EDS分析釋氧化劑物質元素型態 81
圖4.14 MTBE污染場址與整治井示意圖 84

表目錄
表2.1我國公告毒性化學物質之比較 9
表2.2美國各州對MTBE管制濃度 10
表2.3市售過硫酸鹽物理性質比較 18
表2.4過硫酸鹽在水中分解之方程式 21
表2.5不同條件下過硫酸鹽之反應速率 22
表2.6一般氧化劑之相對氧化力 27
表2.7四種氧化劑適用污染物種類 28
表3.1釋過硫酸鹽物質配方組成(w/w) 41
表4.1釋氧化劑物質中不同組成物比例表 49
表4.2 不同比例釋過硫酸鹽物質之釋放速率 53
表4.3現地地下水水質基本性質分析 59
表4.4現地含水層土壤基本性質分析 59
表4.5管柱基本操作參數 60
表4.7 管柱對於MTBE去除能力差別之矩陣分析 67
表4.8管柱對於benzene去除能力差別之矩陣分析 67
表4.9管柱內地下水基本參數 75
方瑋寧,(2002) “MTBE好氧分解之可行性研究”,國立中山大學環境工程研究所碩士論文。
行政院環保署,http://www.epa.gov.tw/。
吳敏煌,(2001)“土壤污染管制標準之研訂”,台灣土壤及地下水環境保護協會簡訊,第一期,第9-14頁。
林文元,(1998) “油品在幾種台灣土壤中之吸附、脫附與移動性探討”,國立屏東科技大學環境工程與科學系碩士論文。
林財富、洪旭文,(2002) “透水性反應牆之設計介紹”,工業污染防治,第二十一卷,第四期,第117-138頁。
林珮雲,(2005) “水中常見之陰離子對過硫酸鹽熱催化氧化三氯乙烯的影響”,國立成功大學環境工程研究所碩士論文。
陳谷汎、高志明、蔡啟堂 (2002) “土壤及地下水生物復育技術”,工業污染防治,第84期,第136-157頁。
陳谷汎、吳龍泉、李晏毅、高志明、孫元邦和梁書豪,(2007) “鐵活化過硫酸鹽氧化法處理受MTBE汙染地下水之探討”,界面科學會誌,第29期(2),第85-100頁。
陳廷育,(2007) “以釋氧物質加強受石油碳氫化合物污染地下水之好氧生物復育效率”,國立中山大學環境工程研究所博士論文。
張莉茹,(2004) “以自然衰減整治受石油碳氫化合物污染之地下水”,國立中山大學環境工程研究所碩士論文。
梁書豪,(2006) “以Fenton-like氧化技術處理受燃料油污染之土壤”,國立中山大學環境工程研究所碩士論文。
梁振儒,(2007a) “淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法”,台灣土壤及地下水環境保護協會簡訊,第二十三期,第13-20頁。
梁振儒,(2007b) “零價鐵活化過硫酸鹽氧化1,1,1-三氯乙烷”,興大工程學刊,第十八卷,第二期,第95-109頁。
黃慧貞,(2001) “土壤有機質對土壤 水系統中低濃度非離子有機污染物吸附行為之研究”,國立中央大學環境工程研究所碩士論文。
黃世峰,(2001) “以臭氧/紫外光去除印刷電路板電鍍液中亞甲基二奈磺酸鈉之研究”,國立台灣大學環境工程學研究所碩士論文。
黃昆德,(2004) “利用高錳酸鉀氧化法處理三氯乙烯污染之地下水” ,國立中山大學環境工程研究所碩士論文。
經濟部工業局,(2003) “工廠土壤及地下水污染整治技術手冊-石化業”。
經濟部能源局,http://www.moeaec.gov.tw/。
廖文彬,(1991) “污染物在地下水之傳輸現象”,地工技術雜誌,第28-37頁。
蔣立為,(1991) “地下水中有機污染物傳輸機制、對人體健康影響極其整治技術之探討”,礦業技術,第52-58頁。
劉敏信、王奕森、韓國興、姚俊宇和莊煒志,(2002) “特定場址自然衰減潛勢分析研究”,第一屆海峽兩岸土壤與地下水污染整治研討會,第227-234頁。
鄭雅文,(2005) “MTBE與BTEX分解菌之篩選及生物分解之動力學研究”,大葉大學環境工程學系碩士論文
Ahmad, F., Schnitker, S.P. and Newell, C.J. (2007). Remediation of RDX- and HMX-contaminated groundwater using organic mulch permeable reactive barriers. Journal of Contaminant Hydrology, 90, 1-20.
Alexander, A., and Eli, K. (2001). Solubilities and vapour pressures of saturated aqueous solutions of sodium peroxydisulfate and potassium peroxydisulfate. J. Chemical Thermodynamics, 33, 61-69.
Amarante, D. (2000). Applying in situ chemical oxidation. Pollution Engineering, 32(2), 40-42.
Barton, C.S., Stewart, D.I., Morris, K. and Bryant, D.E. (2004). Performance of three resin-based materials for treating uranium-contaminated groundwater within a PRB. Journal of Hazardous Materials, B116, 191-204.
Barreto, R.D., Gray K.A., Anders, K. (1995). Photocatalytic degradation of methyl tert-butyl ether in TiO2 slurries: a proposed reaction scheme. Water Research, 29, 1243-1248.
Berthouex, P.M. and Brown, L.C. (2002). Statistics for Environmental Enginneers. LEWIS PUBLISHERS, Second Edition.
Bjerg, P.L. (2008). In situ chemical oxidation – state of the art. Schæffergården, Gentofte.
Block, P.A., Brown, R.A., and Robinson, D. (2004). Novel activation technologies for sodium persulfate in situ chemical oxidation. Proceedings of the 4th International Conference on the Remediation of Chlorinated and Recalcitrant Compounds.
Brar, S.K., Verma, M.R., Surampalli, Y., Misra, K., Tyagi, R.D. and N. Meunier, J.F. (2006). Blais, Bioremediation of hazardous wastes - a review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10, 59-72.
Brown, R.A., Robinson, D., Skladany, G. and Loeper, J. (2003). Response to Naturally Occurring Organic Material : Permanganate versus Persulfate. Proceedings of ConSoil, 2003-8th International FZK/TNO Conference on Contaminated Soil, 1686-1691, May 12-16, Gent, Belgium.
California Department of Health Services (1999). Drinking Water Standards for Methyl Tertiary-Butyl Ether(MTBE). Sacramento, CA.
Cao, J., Zhang, W.X., Brown, D.G. and Sethi, D. (2008). Oxidation of Lindane with Fe(II)-activated sodium Persulfate. Environmental Engineering Science, 25(2), 221-228.
Chang, C.N., Hsu, C.F., Chao, A.C. and Lin J.G. (1995). Characteristics of the Disinfection by Products(DBPs) and Process Control Techniques of the Disinfextion Processing Pre-ozonation and Post-chlorination. Water Supply, Vol. 13, 146-151.
Chen, K.F., Kao, C.M., Chen, T.Y., Weng, C.H. and Tsai, C.T. (2006). Intrinsic bioremediation of MTBE-contaminated groundwater at a petroleum-hydrocarbon spill site. Environmental Geology, 50, 439-445.
Chen, K.F., Kao, C.M., Hsieh, C.Y., Chen, S.C. and Chen, Y.L. (2005a). Natural Biodegradation of MTBE under Different Environmental Conditions: Microcosm and Microbial Identification Studies. Bulletin of Environmental Contamination and Toxicology, 74(2), 356-364.
Chen, K.F., Kao, C.M., Wang, J.Y. and Chien, C.C. (2005b). Natural attenuation of MTBE at Two Petroleum-Hydrocarbon Spill Sites. Journal of Hazardous Materials, 125, (1-3), 10-16.
Deeb, R.A., Scow, K.M. and Alvarez-Cohen, L. (2000). Aerobic MTBE biodegradation: an examination of past studies, current challenges and future research directions. Biodegradation, 11, 171-186.
Doong, R.A. and Wu, S.C. (1993). The effect of Oxidation-reduction Potential on the Diotransfernations of Chlorined Hydrocarbons. Water Science and Technology, 26, 35-39.
Edwards, J.O. (1980). Thermal decomposition of peroxodisulphate ions. Reviews in Inorganic Chemistry, 2(3), 179-206.
Ferguson, S.H., Woinarski, A.Z., Snape, I., Morris, C.E. and Revill, A.T. (2004). A Field of in Situ Chemical Oxidation to Remediate Long-term Diesel Contaminated Antarctic Soil. Cold Regions Science and Technology, 40, 47-60.
Fiorenza, S. and Rifai H. S. (2003). Review of MTBE biodegradation andBioremediation. Bioremediation Journal, 7(1), 1-35.
Gareth, J.P. and Andrew, A.C. (1996). Polymer communications: sonochemical acceleration of persulfate decomposition. Polymer, 37(17), 3971-3973.
Gomez, C.A. (1993). Characterization of a dissolved hydrocarbon plume.M. S. Thesis, North Carolina State University, Raleigh, NC.
Goulden, P.D. and Anthony, D.H.J. (1978). Kinetics of uncatalyzed peroxydisulfate oxidation of organic material in fresh water. Analytical Chemistry, 50(7), 953-958.
Grove, J.K. and Stein, O.R. (2005). Polar organic solvent removal in microcosm constructed wetlands. Water Research 39 4040-4050.
Huang, K.C., Couttenye, R.A., and Hoag, G.E. (2002). Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere, 49, 413-420.
Huang, K.C., Zhao, Z.Q., Hoag, G.E., Dahmani, A. and Block, P.A. (2005). Degradation of volatile organic compounds with thermally activated persulfate oxidation. chemosphere, 61(4), 511-560.
IARC (International Agency for Research on Cancer), (1999). Monographs on the evaluation of the carcinogenic risk of chemicals to man. Geneva. World Health Organization, IARC.
Lowry, M.I., Bartelt-hunt, S.L., Beaulieu, S.M. and Barlaz, M.A. (2008). Development of a Coupled Reactor Model for Prediction of Organic Contaminant Fate in Landfills. Environ. Sci. Technol. 42 7444-7451.
ITRC (The Interstate Technology & Regulatory Council), (2005). Technical and Regulatory Guidance for In Situ Chemical Oxidation 2nd Ed.
Jonathan, J.S., Fruchter, J.S., Wikkiams, N.D. Vermeul, V.R and Sklarew, D. (2004). In situ chemical reduction of aquifer sediments: enhancement of reactive iron Phases and TCE dechlorination. Environ. Sci. Technol., 38(17), 4656-4663.
Kao, C.M., Chen, S.C., Wang, J.Y., Chen, Y.L. and Lee, S.Z. (2003a). Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies. Water Research, 37(1), 27-38,.
Kao, C.M., Chen, Y.L., Chen, S.C., Yeh, T.Y., and Wu, W.S. (2003b). Enhanced PCE dechlorination by biobarrier systems under different redox conditions. Water Research, 37, 4885-4894.
Kao, C.M., Chen, S.C. and Su, M.C. (2001). Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation. Chemosphere, 44, 925-934.
Kao, C.M. and Lei S.E. (2000). Using a peat biobarrier to remediate PCE/TCE contaminated aquifers. Water Research, 34, 835-845.
Kelly, K.L., Marleym, M.C. and Sperry, K.L. (2002). In-situ Chemical Oxidation on MTBE. Proceedings of 2002 Joint CSCE/EWRI of ASCE International Conference on Environmental Engineering, July 21-24, Niagara Falls, Ontario, Canada.
Kislenko, V.N., Berlin, A.A. and Litovchnko, N.V. (1995). Kinetics of oxidation of glucose by persulfate ions in the presence of Mn(II) ions. Kinetics and Catalysis, 38(3), 359-364
Kolthoff, I.M. and Miller, I.K. (1951). The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. J. American Chemical Society, 73, 3055-3059.
Kormann, C., Bahnemann, D.W. and Hoffman, M.R. (1988). Photocatalytic production of H2O2 and organic peroxides in aqueous suspensions of TiO2, ZnO and desert sand. Environmental Science and Technology, 22, 798-806.
Kotani, T., Yurimoto, H., Kato, N. and Sakai, Y. (2007). Novel acetone metabolism in a Propane-Utilizing Bacterium, Gordonia sp. Strain TY-5▽. Journal of Bacteriology, 189, 886-893.
Kuntz, R.L., Brown, L.R., Zappi M.E. and French W.T. (2003). Isopropanol and acetone induces vinyl chloride degradation in Rhodococcus rhodochrous. J Ind Microbiol Biotechnol, 30, 651-655.
Lee, E.S. and Schwartz, F.W. (2007). Characteristics and applications of controlled-release KMnO4 for groundwater remediation. Chemosphere, 66, 2058-2066.
Lenka, V., Jan N., Martina S. and Martin K. (2006). The biofiltration permeable reactive barrier: Practical experience from Synthesia. International Biodeterioration & Biodegradation, 58, 224-230.
Li, S.X., Wei, D., Mak, N.K., Cai, Z.W., Xu, X.R., Li, H.B. and Jiang, Y. (2009). Degradation of diphenylamine by persulfate: Performance optimization, kinetics and mechanism. Journal of Hazardous Materials, 164, 26-31.
Li, X.D. and Schwartz F.W. (2004). DNAPL remediation with in situ chemical oxidation using potassium permanganate. II. Increasing removal efficiency by dissolving Mn oxide precipitates. Journal of Contaminant Hydrology, 68, 269-287.
Liang, C.J., Bruell, C.J., Marley, M.C. and Sperry, K.L. (2003). Thermally activated persulfate oxidation of Trichloroethylene (TCE) and 1,1,1-Trichlorothane (TCA) in aqueous systems and soil slurries. Soil and Sediment Contamination, 12(2), 207-228.
Liang, C.J., Bruell, C.J., Marley, M.C. and Sperry, K.L. (2004a). Persulfate oxidation for in situ remediation of TCE. I. Acivated by ferrous ion with and without a persulfate-thiosulfate recox couple. Chemosphere, 55, 1213-1223.
Liang, C.J., Bruell, C.J., Marley, M.C. and Sperry, K.L. (2004b). Persulfate oxidation for in situ remediation of TCE. II. Acivated by chelated ferrous ion. Chemosphere, 55, 1225-1233.
Liang C., Lee, I.L., Hsu, I.Y., Liang, C.P. and Lin, Y.L. (2008). Persulfate oxidation of trichloroethylene with and without iron activation in porous media. Chemosphere, 70, 426-435.
Lien, H.L. and Wilkin R.T. (2005). High-level arsenite removal from groundwater by zero-valent iron. Chemosphere, 59, 377-386.
Liu, S.J., Jiang B., Huang G.Q. and Li, X.G. (2006). Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier. Water Research, 40, 3401-3408.
Manley, T.C. and Niegowski, S.J. (1967). Kirkothmer Encyclopedia of chemical Technology. Vol. 14, 2nd ed. John Wiley and Sons, Inc., New York. 410-432.
Mikkolam H., Schmale, J.Y., Wesner, W. and Petkovska, S. (2008). Laboratory pre-assays for soil remediation by electro synthesis of oxidants and their electrokinetic distribution. Journal of Environmental Science and Health Part A, 43, 907-912.
Morrison, S.J., Metzler, D.R. and Dwyer, B.P. (2002). Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling. Journal of Contaminant Hydrology, 56, 99-116.
Neta, P., Robert, E.H. and Alberta, B.R. (1988). Rate constants for reactions of inorganic radical in aqueous solution. J. Physical Chemistry Reference Data, 17 (3), 1027-1262.
Park, J.B., Lee, S.H., Lee, J.W. and Lee, C.Y. (2002). Lab scale experiments for permeable reactive barriers against contaminated groundwater with ammonium and heavy metals using clinoptilolite (01-29B). Journal of Hazardous Materials, B95, 65-79.
Paul S. (2005). MTBE groundwater action/clean-up levels for LUST sites: current & proposed. Delta Environmental Consultants.
Peretz, C., Froom, P., Pardo, A. and Goren, A. (2000). Exposure to benzene in fuel distribution installations : Monitoring and Prevention. Archives of Environmental Health, 55, 439-446.
Peyton, G.R. (1993). The free-radical chemistry of persulfate-based total organic carbon analyzers. Marine Chemistry, 41, 91-103.
Platen, H., Janssen, P.H. and Schink, B. (1994). Fermentative degradation of acetone by an enrichment cluture in membrane-separated cluture devices and in cell suspensions. FEMS Microbiology Letters, 122, 27-32.
Pugh, J.R. (1999). In situ remediation of soils containing organic contaminants using the electromigration of peroxysulfate ions. U.S. Patent 597348.
Richardson, J. and Nicklow, J.w., (2002). In situ permeable reactive barriers for groundwater contamination. Soil and Sediment Contamination, 11(2), 241-268.
Rosa, Maria, F.N., Shui, Wai, L.H., Díaz, N., B.D. and Sergio, P.S. (2007). Kinetics of the degradation of 1,4-Dioxane using Persulfate. Journal of the Mexican Chemical Society, 51(2), 67-71.
Salari, D., Daneshvar, N., Niaei, A., Aber, S. and Rasoulifard, M.H. (2008). The photo-oxidative destruction of C.I. Basic Yellow 2 using UV/S2O process in an annular photoreactor. Journal of Environmental Science and Health Part A, 43, 657-663.
Salari, D., Niaei, A., Aber, S. and Rasoulifard, M.H. (2009). The photooxidative destruction of C.I. Basic Yellow 2 using UV/S2O82- process in a rectangular continuous photoreactor. Journal of Hazardous Materials, 166, 61-66.
Seagren, E. and Becker, J. (2002). Review of natural attenuation of BTEX and MTBE in groundwater. Practice periodical of hazardous, toxic, and radioactive waste management, 6(3), 156-172.
Seigrist, R.L., Urynowicz, M.A., West, O.R., Crimi, M.L. and Lowe, K.S. (2001). Principle and Practices of In Situ Chemical Oxidation Using Permanganate. Battelle Press.
Shiying, T., Youyuan, C., Huizhen, X., Ping, W., Yuhong, L. and Maodong, W. (2008). A novel advanced oxidation technology based on activated Persulfate. progress in chemistry, 20(9), 1433-1438.
Sluis, M.K., Larsen, R.A., Krum, J.G., Anderson, R. Metcalf, W.W. and Endign, S.A. (2002). Biochemical, Molecular, and Genetic Analyses of the Acetone Carboxylases from Xanthobacter autotrophicus Strain Py2 and Rhodobacter capsulatus Strain B10. JOURNAL OF BACTERIOLOGY, 2969-2977.
Soga, K., Page, J.W.E. and Illangasekare, T.H. (2004). A review of NAPL source zone remediation efficiency and the mass flux approach. Journal of Hazardous Materials, 110, 13-27.
Susan, P. and Monice, Z.F. (2001). Final report on the safety assessment of ammonium, potassium, and sodium Persulfate. Internation Journal of Toxicology”. 20(3), 7-21.
Tieckelmann, R.H., Thorp, D.S., Gagliardi, C. and Downey, G.D. (1998). Use of persulfate to destroy haloform U.S. Patent 5, 849, 985.
U.S. Environmental Protection Agency (EPA) (1997). Analysis of Selected Enhancements for Soil Vapor Extraction. EPA-542-R-97-007.
Wareham, D.G., Hall, K.J. and Mavinic, D.S. (1993). Real-time Control of Aerobic-Anoxic Sludge Digestion Using ORP. J. of Environmental Engineering, Vol. 119, 120-136.
Wu, Y.W., Huang, G.H., Chakma, A. and Zeng, G.M. (2005). Separation of petroleum hydrocarbons from soil and groundwater through enhanced bioremediation. Energy Sources, 27, 221-232.
Xu, X., Ye, Q., Tang, T. and Wang, D. (2008). Hg0 oxidtive absorpyion by K2S2O8 solution xatalyzed by Ag+ and Cu2+. Journal of Hazardous Materials, 158, 410-416.
Yu, X.Y., Bao, Z.C. and John, R.B. (2004). Free radical reaction involving Cl•, Cl •, and SO • in the 248 nm photolysis of aqueous solutions containing S2O and Cl-. J. Physical Chemistry A, 108, 295-308.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top