跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 04:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林家駿
研究生(外文):Ghia-Jun Lin
論文名稱:應用重力加速度感測器於人體上肢動作判斷
論文名稱(外文):Applying G-sensor to detect the human upper limb movement
指導教授:李烱三李烱三引用關係
指導教授(外文):Chiung-San Lee
學位類別:碩士
校院名稱:國立台北護理學院
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:73
中文關鍵詞:加速度感應器人體感測網路
外文關鍵詞:G-sensorBody Area Sensor NetworkZigbee
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1255
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
人體感測網路是一種新興的技術,於人機介面的狀態下,可以蒐集到更多的
資訊。同時也帶來了新的挑戰,要如何利用這些感應器,用於人體資訊。
本論文研究目的有二:一是設計出結合加速度感測器(G-sensor)的系統,配
合著3D 模擬軟體在螢幕中呈現3D 的人體模擬圖。二是將所蒐集到的資料,判斷
人體上肢往上、往下、內縮、外擴以及畫圓圈的姿勢。
設計和實作無線感應器節點的加速度運動捕捉系統,由一個三軸加速度感應
元件(包括微控制器和無線收發器),我們特別針對人體上肢的反應放置了三個節
點(肩關節、肘關節、手腕關節)。
將蒐集的資料加以處理,利用最長共同子字串演算法 ( Longest Common
Subsequence)來估算出上肢姿勢狀態。透過這次的實驗顯出加速度感測器放置在
人體上的可行性以及是適合與人機介面的應用。
The Body Area Sensor Network is a new technology to collect more vital sign information. Research on this paper has two purposes: First, this thesis implements a 3D body simulation video combined with the G-sensors system to demonstrate the hand motion. Second, this thesis also recognizes the actions about hand motion by analyzing the G-sensor data. These recognized actions include human upper limb up, down, internal shrinkage, enlargement and drawing circular. The thesis employs three zigbee-based G-sensor modules placed at a person’s shoulder, elbow, and wrist joint to capture hand motions. We also apply the LCS (longest Common Subsequence) to
analyze those captured motion data from the G-sensor modules. Through this experiment shows that the acceleration sensor placed on the viability of the human body is suitable for applications with Human Computer Interfaces.
目錄
碩士學位考試委員會審定書............................................I
博碩士論文電子檔案上網授權書.......................................II
誌 謝..........................................................III
論文摘要...........................................................IV
ABSTRACT............................................................V
目錄...............................................................VI
圖目錄............................................................VII
表目錄.............................................................IX
第一章 緒論....................................................1
第一節 研究背景.............................................1
第二節 研究動機與目的.......................................3
第三節 設備..................................................4
第四節 論文架構.............................................4
第二章 文獻探討...............................................6
第三章 相關研究..............................................15
第一節 加速度感測器........................................15
第二節 人體上肢............................................19
第三節 Zigbee ..............................................21
壹 EST Network 網路....................................23
貳 EST Network 網路堆疊................................24
第四節 Virtools 4.0 ........................................26
第五節 軟體介面Visual Basic 2005 ...........................29
第四章 研究方法..............................................31
第一節 研究架構............................................31
第二節 系統流程............................................33
第三節 系統結果............................................34
第四節 系統設計............................................45
壹 加速度傳感器(G-sensor)...............................45
貳 介面程式.............................................48
參 Virtools 4.0.........................................50
肆 動作辨識機制.........................................51
第五章 結論與未來展望........................................68
參考文獻..........................................................69
參考文獻
1. Roy Want,「未來生活的隱形僕人」科學人 ,Feb,2004
http://sa.ylib.com/read/readshow.asp?FDocNo=380&DocNo=60
6
2. A. R. Golding and N. Lesh. “Indoor navigation using a diverse set of
cheap, wearable sensors, ” In ISWC '99:Proceedings of the 3rd IEEE
International Symposium on Wearable Computers, Washington,
DC,USA, pp. 29, 1999.
3. J ,Mantyjarvi, J. Himberg, and T. Seppanen, “Recognizing human
motion with multiple acceleration sensors,” IEEE Int. Conf. Systems,
Man, and Cybernetics, pp. 747–752, 2001.
4. P.F. Binkley, W. Frontera, D.G. Standaert, J. Stein, “Prediction the
potential of wearable technology,” IEEE Eng. in Med. Bio. Mag.
pp.23-27, May/Jun. 2003.
5. A. Pentland, “Healthwear: Medical technology becomes wearable,”
IEEE Computer, vol.37, no.5, pp.42-49, 2004.
6. Najafi, B; Aminian, K; Paraschiv-Ionescu, A; Loew, E; Bula, C
J;Robert, P, “Ambulatory System for Human Motion Analysis Using
a Kinematic Sensor:Monitoring of Daily Physical Activity in the
Elderly,” IEEE Trans. Biomed. Eng., vol. 50, no. 6, pp. 711-723,
June 2003
7. G. Johansson, “Visual perception of biological motion and a model for
its analysis,” Perception and Psychophysics, vol.14, pp. 201-211,
1973.
8. G. Johansson, “Visual motion perception,” Scientific American,
vol.232, no.6, pp.76-88, 1975.
9. QUALISYS,“Oqus 100, 300 and 500 series Qualisys motion capture
camera with high-speed video”
http://www.qualisys.com/archive/product_information_pdf/PI_Oqus.p
df
10. David Raichlen “The Origin of Human Bipedalism article”
http://tv.azpm.org/kuat/segments/2008/6/10/kuat-bipedalism
11. codamotion“Codamotion for Virtual Reality and Interaction”
http://www.codamotion.com/codamotion-for-virtual-reality-and-intera
ction.html
12. Ascension“Advanced DC Tracking Technology lets you capture”
http://www.ascension-tech.com/realtime/MotionStarWirelessLITE.php
13. K. Lorincz et al, “Sensor Network for Emergency Response:
Challenges and Opportunities,” Pervasive Computing, pp. 16-23,
Oct.-Dec. 2004.
14. A. Hogue ,M. Robinson,M. R. Jenkin, R. S. Allison,“A vision-based
head tracking system for fully immersive displays,” the workshop on
Virtual environments 2003,Vol.39,pp 179-187,2003
15. Vrealities,“CyberGlove II”
http://www.vrealities.com/cyber.html
16. U. Anliker et al, “A Systematic Approach to the Design of Distributed
Wearable Systems,” IEEE Trans. Computers, vol.53, no.8, pp.
1017-1033, Aug. 2004.
17. G. Welch, E. Foxlin, “Motion tracking; no silver bullet, but a
respectable arsenal,” IEEE Comp. Graph. App. vol.22, no.6, pp. 24-38,
Nov./Dec. 2002.
18. H. Dejnabadi, B.M. Jolles, K. Aminian, “A new approach to accurate
measurement of uniaxial joint angles based on a combination of
accelerometers and gyroscopes,” IEEE Trans. Biomed. Eng. vol.52,
no.8, pp. 1478-1484, 2005.
19. L. Bao, S.S. Intille, “Activity recognition from userannotated
acceleration data,” 2nd Int. Conf. Pervasive Computing , pp. 385-396,
2004.
20. R. Williamson, B. Andrews, “Gait event detection for FES using
accelerometers and supervised machine learning,” IEEE Trans. Rehab.
Eng. vol.8, no.3, pp.312- 319, Sep. 2000.
21. E.B. Titianova et al, “Gait characteristics and functional ambulation profile in patients with chronic unilateral stroke,” Am. J. Phy. Med.
Rehab. vol.82, no.10, pp.778-786, Oct. 2003.
22. H.J. Luinge, P.H. Veltink, “Inclination measurement of human
movement using a 3-D accelerometer with autocalibration,” IEEE
Trans. Neural Sys. Rehab. Eng. vol.12, no.1, pp.112-121, Mar. 2004.
23. Freescale,“± 1.5g - 6g Three Axis Low-g Micromachined
Accelerometer,”
http://www.freescale.com/files/sensors/doc/data_sheet/MMA7260QT.
pdf, Mar. ,2008.
24. 愛迪斯科技股份有限公司「Virtools 4 -- 3D for All 革命性的產品生
命週期管理」
http://www.axis3d.com.tw/software.php?cat=virtools
25. V.I. Pavlovic, R. Sharma, and T.S. Huang “Visual interpretation of
hand gestures for human-computer interaction: a review,” IEEE
Transaction on Pattern Analysis and Machine Intelligence, Vol.19,
No.7.pp 312-319,1997
26. Rabiner, L. R. “A tutorial on hidden Markov models and selected
applications in speech recognition, ” Proceedings of the IEEE, 77
no.2,pp. 257-286,1989
27. Farella, E. Pieracci, A. Acquaviva, A. “Design and
implementation of WiMoCA node for a body area wireless sensor
network,” Systems Communications, 2005. pp. 14-17 Aug. 2005
28. Farella, E. Pieracci, A. Benini, L. Acquaviva, A. University of
Bologna, Italy;” A Wireless Body Area Sensor Network for Posture
Detection,” Computers and Communications, 2006. ISCC '06.
Proceedings. 11th IEEE Symposium pp. 26-29 June 2006
29. Elisabetta Farella · Augusto Pieracci · Luca Benini · Laura Rocchi ·
Andrea Acquaviva, “Interfacing human and computer with wireless
body area sensor networks: the WiMoCA solution,” Multimedia
Tools and Applications Volume 38, ,No.3 pp.312-319,July,2008
30. Crossbow Technology“MTS/MDA Sensor Board Users Manual,”
June 2007
http://www.xbow.com/Support/Support_pdf_files/MTS-MDA_Series
_Users_Manual.pdf
31. Liang Dong , Jiankang Wu , Xiaoming Bao , Wendong
Xiao , “Extraction of Gait Features Using a Wireless Body Sensor
Network (BSN),” ITS Telecommunications 6th International
Conference pp18-23, June 2006
32. Liang Dong, Jiankang Wu, Xiang Chen,“Real-time physical activity
monitoring by data fusion in body sensor networks,” Information
Fusion, 2007 10th International Conference on Volume , Issue ,pp.1-7,
9-12 July 2007
33. Jaime Barnes , Roozbeh Jafari , “Locomotion monitoring using body
sensor networks,” ACM International Conference on PErvasive
Technologies Related to Assistive Environments ,Vol. 282, 2008
34. Yen-Ping Chen, Jhun-Ying Yang, Shun-Nan Liou, Gwo-Yun Lee,and
Jeen-Shing Wang, “Online Classifier Construction Algorithm for
Human Motion Detection Using an Accelerometer, ” Applied
Mathematics and Computation, 2008.
35. Schlömer, T., Poppinga, B., Henze, N., and Boll, S. 2008. “Gesture
recognition with a Wii controller,” 2nd international Conference on
Tangible and Embedded interaction TEI '08. ACM, New York, NY,
pp.11-14 , 2008
36. 王宗一、鍾哲民、張書龍、羅聖心, 「使用加速度感測器辨認3D 動
作之身分驗證機制,」 2008 Symposium on Digital Life Technologies:
Human-Centric Smart Living Technology, Tainan, 2008.
37. 賴盈霖 「結合GPS/重力感測器/陀螺儀 DR 功能進駐導航裝置」
新電子科技雜誌2008 期1 月號262 期
http://www.mem.com.tw/coverstory_content.asp?sn=0801290009
38. Freescale Semiconductor ,“Simple Media Access Controller (SMAC)
User’s Guide, ” Document Number: SMACRM Rev. 1.4”, Oct.,
2006.
39. 林奕良 「配合改良上肢運動模式之新型輪椅設計」機械工程學系
研究所, 國立中山大學, 2000
40. Keny Chen, “EST_ZigBeeModule_V100.pdf, ” EST Wireless
Network Module Product Specification, Feb., 2007.
41. D.S. Hirschberg , “ A Linear Space Algorithm for Computing
Maximal Common Subsequence,” Communication of ACM,
Vol.18,pp.341-343,1975
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top