跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 17:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡良庭
研究生(外文):Liang Ting, Tsai
論文名稱:運用重複取樣方法探究複雜資料的取樣設計及權重於CFA參數估計之效應
論文名稱(外文):The effect of using resampling methods to sampling design and weight with complex data on the parameter estimation in confirmatory factor analysis
指導教授:楊志堅楊志堅引用關係
指導教授(外文):Chih-Chien Yang
學位類別:博士
校院名稱:國立臺中教育大學
系所名稱:教育測驗統計研究所
學門:教育學門
學類:教育測驗評量學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:96
中文關鍵詞:取樣設計重複取樣確認性因素分析取樣權重
外文關鍵詞:sampling designresamplingconfirmatory factor analysissampling weight
相關次數:
  • 被引用被引用:0
  • 點閱點閱:641
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
調查研究中的資料分析必須搭配適當的取樣權重,才能正確的推論母體的統計模式參數。本研究主要延伸蔡良庭與楊志堅(2008)及Yang與Tsai(2006)的確認性因素分析(confirmatory factor analysis, CFA)模型,以JRR、Bootstrap、ABB及RG等不同重複取樣程序,評估分層簡單隨機取樣(Str. RS)及等比率等機率取樣(PPS)及其權重計算方式對於CFA分析的參數估計值及參數估計標準誤影響。但是當調查研究為包含多階層的複雜資料結構時,Str. RS及PPS取樣設計最為研究者所使用,但卻也最常為研究者忽略這兩種設計的不同取樣權重計算方式對於參數估計的影響。
本研究以數值模擬實驗方法,評估Str. RS及PPS取樣設計及其權重計算對於參數估計的影響,並探討不同重複取樣程序的正確性及穩定性。實驗設計除了取樣設計之外,包含連續及類別資料型態、多種不同取樣數、PSU異質性及重複取樣程序。研究結果顯示不論連續或類別資料,建議採用PPS的取樣設計及其權重計算能提供較精準的參數估計。重複取樣程序部分,相較於RG方法,JRR、Bootstrap及ABB程序能提供更精準且穩定的參數估計。
In large-scale survey, appropriate sampling weights have to be engaged to ensure proper statistical inferences for population parameters. A further extension factor analysis model based on Tsai and Yang (2008) and Yang and Tsai (2006) was proposed in this study. The model was used to evaluate the effect of different resampling procedure (JRR, Bootstrap, ABB, and RG), combined with stratified random sampling (Str. RS) and probability proportional to size (PPS), on the accuracy of parameter and standard error estimation. When complex sampling data were found in survey researches, the Str. RS and PPS sampling designs are often applied. However, the effects of different sampling weights within these two designs on the parameter estimation were often neglected.
The effects of parameter estimation by using Str. RS and PPS sampling design on the accuracy were investigated through a numerical simulation study. The accuracy and stability of parameter estimate under different resampling approaches were also discussed. Independent variables that manipulated in this study includes the sampling designs, data type (continuous or categorical), sampling size, variations of PSU, and resampling approaches. The results suggest the PPS sampling design and it’s sampling weight can provided more precise parameter estimate of CFA models in a stratified sampling survey, no matter for continuous or categorical data. In resampling approaches, the accuracies and stabilities of JRR, Bootstrap and ABB are much better than RG.
第一章 緒論 1
第一節 研究動機 1
壹、重複取樣程序 4
貳、PSU異質性 6
參、取樣樣本數 7
肆、母群體資料型態 7
第二節 研究問題 8
第二章 文獻回顧與評述 9
第一節 取樣設計 9
壹、分層隨機取樣(Str. RS) 9
貳、等比率等機率取樣(PPS) 10
第二節 分層結構資料及SEM模式分析 10
第三節 Quasi Pseudo Maximum likelihood (QPML) 12
第四節 重複取樣程序及其權重計算 13
壹、Jackknife Repeated Replication (JRR) 13
貳、Bootstrap 16
參、Adjusted Balanced Bootstrap (ABB) 19
肆、Random Group (RG) 21
第三章 研究方法與進行步驟 25
第一節 模擬研究設計 25
第二節 取樣設計 27
壹、Jackknife Repeated Replication (JRR) 27
貳、Bootstrap 28
參、Adjusted Balanced Bootstrap (ABB) 28
肆、Random Group (RG) 29
第三節 結果分析 29
第四章 研究結果 31
第一節 連續資料 31
壹、取樣設計及不同重複取樣程序的影響 31
貳、取樣數(n)的影響 32
參、PSU異質性(d)的影響 34
第二節 類別資料 37
壹、取樣設計及不同重複取樣程序的影響 37
貳、取樣數(n)的影響 38
參、PSU異質性(d)的影響 40
第五章 結論與討論 43
第一節 取樣設計的影響 43
第二節 重複取樣程序的影響 44
第三節 取樣樣本數的影響 45
第四節 PSU異質性的影響 47
第五節 綜合討論 48
參考文獻 51
附錄 57
附錄一 連續資料下之參數估計及參數估計標準誤偏誤與MSE 57
附錄二 類別資料下之參數估計及參數估計標準誤偏誤與MSE表現 61
附錄三 PPS在連續資料之參數( )估計值分配 65
附錄四 Str. RS在連續資料之參數( )估計值分配 69
附錄五 PPS在連續資料之參數( )估計標準誤分配 73
附錄六 Str. RS在連續資料之參數( )估計標準誤分配 77
附錄七 PPS在類別資料之參數( )估計值分配 81
附錄八 Str. RS在類別資料之參數( )估計值分配 85
附錄九 PPS在類別資料之參數( )估計標準誤分配 89
附錄十 Str. RS在類別資料之參數( )估計標準誤分配 93
楊志堅、蔡良庭(2008)。評估取樣權重於檢定Likert問卷之測量恆等性研究。中華心理學刊。50(3),257-269。
楊志堅、蔡良庭、楊志強(2009)。以LVQ-ESW推估受訪者未知權重之研究。中華心理學刊。(in press)
蔡良庭、楊志堅(2008)。取樣權重值於應用SEM模式分析之參數估算正確性研究。教育與心理研究。31(1),155-177。
張笠雲、關秉寅、黃敏雄、王麗雲(2002)。臺灣教育長期追蹤資料庫研究。行政院國家科學委員會專題研究計畫報告。
章英華、傅仰止(2004)。台灣地區社會變遷基本調查計畫:第四期第四次調查計畫執行報告。台北:中央研究院社會學研究所。
Andersson, C., Forsman, G., & Wretman, J. (1987). Estimating the variance of a complex statistic: A monte carlo study of some approximate technique. Journal of Official Statistics, 3, 251-265.
Asparouhov, T. (2004). Stratification in multivariate modeling (Mplus Web Notes: No. 9). Retrieved May 17, 2006, from http://www.statmodel.com/mplus/examples/ webnotes/MplusNote921.pdf
Asparouhov, T. (2005). Sampling weights in latent variable modeling. Structural Equation Modeling, 12, 411-434.
Asparouhov, T. (2006). General multi-level modeling with sampling weights. Communications in Statistics Theory and Methods, 35, 439-460.
Babu, G. J., & Singh, K. (1983). Inference on means using the bootstrap. The Annals of Statistics, 11, 999-1003.
Blume, J. D., & Royall, R. M. (2003). Illustrating the law of large number (and confidence intervals). The American Statistician, 57, 51-57.
Booth, J. G., Hall, P., & Wood, A. T. A. (1993). Balanced importance resampling for the bootstrap. The Annals of Statistics, 21, 286-298.
Chernick, M. R. (2007). Bootstrap methods: A guide for practitioners and researchers. New York: Wiley.
Davison, A. C., & Hinkley, D. V. (1998). Bootstrap methods and their application. Cambridge: Cambridge University Press
Davison, A. C., Hinkley, D. V., & Schechtman, E. (1986). Efficient bootstrap simulation. Biometrika, 73, 555-566.
Davison, A. C., Hinkley, D. V., & Young, G. A. (2003). Recent developments in bootstrap methodology. Statistical Science, 18, 141-157.
Dippo, C. S., & Wolter, K. M. (1984). A comparison of variance estimators using the Taylor series approximation. Proceedings of the Survey Research Section, American Statistical Association. 113-121.
Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans. Philadelphia: SIAM.
Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. Chapman & Hall, New York.
Freund, R. J., & Wilson, W. J. (2003). Statistical Methods (2nd ed.). SD: Academic Press.
Gonzalez, E. J., & Kennedy, A. M. (2003). PIRLS 2001 user guide for the international database. Chestnut Hill, MA: Boston College.
Grilli, L., & Pratesi, M. (2004). Weighted estimation in multilevel ordinal and binary models in the presence of informative sampling designs. Survey methodology, 30, 4-14.
Hogg, R. V., & Tanis, E. A. (2005). Probability and Statistical Inference (7th ed.). NJ: Prentice Hall.
Hoogland, J. J., & Boomsma, A. (1998). Robustness studies in covariance structure modeling: An overview and a meta-analysis. Sociological Methods and Research, 26, 329-367.
Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8: Users’ reference guide. Chicago: Scientific Software International.
Kaplan, D., & Ferguson, A. J. (1999). On the utilization of sample weights in latent variable models. Structural Equation Modeling, 6, 305-321.
Kaufman, S (1998). A bootstrap variance estimator for systematic PPS sampling. Proceedings for the Section on Survey Methods, American Statistical Association, 180-185.
Kaufman, S. (2006). Using bootstrap to estimate the variance in a very complex sample design. Proceedings for the Section on Survey Methods, American Statistical Association, 769-774.
Kelly, D. L. (2003). Developing the PIRLS background questionnaires. In M. O. Martin, I.V.S. Mullis, & A.M. Kennedy (Eds). PIRLS 2001 Technical Report. Chestnut Hill, MA. Boston College.
Kish, L. (1965). Survey sampling. New York: Wiley.
Korn, E. L., & Graubard. B. I. (1995). Examples of differing weighted and unweighted estimates from a sample survey. The American Statistician, 49, 291-295.
Kovačević, M. S., Huang, R., & You, Y. (2006). Bootstrapping for variance estimation in multi-level models fitted to survey data. Proceedings for the Section on Survey Methods, American Statistical Association, 3260-3269.
Kovar, J. G., Rao, J. N. K., & Wu, C. F. J. (1988). Bootstrap and other methods to measure errors in survey estimates. Canadian Journal of Statistics, 16, 25-46.
Krewski, D., & Rao, J. N. K. (1981). Inference from stratified samples: Properties of the linearization, jackknife, and balanced replication methods. The Annals of Statistics, 9, 1010-1019.
Lahiri, P. (2003). On the impact of the bootstrap in survey sampling and small-area estimation. Statistical Science, 18, 199-210.
Lee, E. S., Forthofer, R. N., & Lorimor, R. J. (1989). Analyzing complex survey data. Newbury Park, CA: Sage.
Li, Y., Lynch, C., Shimizu, I., & Kaufman, S. (2004). Imputation variance estimation by bootstrap method for the National Ambulatory Medical Care Survey. Proceedings of the Survey Research Methods Section, American Statistical Association, 3883-3888.
Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology. 140, 1-55.
Lohr, S. L. (1999). Sampling: Design and analysis. Pacific Grove, CA: Duxbury Press.
Martin, M. O. (2005). TIMSS 2003 user guide for the international database. Chestnut Hill, MA: Boston College.
McCarthy, P. J. (1969). Pseudo-replication: Half-samples. Review of the International Statistical Institute, 37, 239-264.
Meade, A. W., & Lautenschlager, G. J. (2004). A monte-carlo study of confirmatory factor analytic tests of measurement equivalence / invariance. Structural Equation Modeling, 11, 60-72.
Mulry, M. H., & Wolter, K. M. (1981). The effect of Fisher’s Z-transformation on confidence intervals for the correlation coefficient. Proceedings of the Survey Research Section, American Statistical Association, 601-606.
Muthén, L. K., & Muthén, B. O. (1998-2006). Mplus user’s guide. Los Angeles: Muthén & Muthén.
Muthén, B. O., & Satorra, A. (1995). Complex sample data in structural equation modeling. In P. V. Marsden (Ed.), Sociological methodology (pp. 267-316).Washington, DC: American Sociological Association.
Nigam, A. K., & Rao, J. N. K. (1996). On balanced bootstrap for stratified multistage samples. Statistic Sinica, 6, 199-214.
OECD (2005). PISA 2003 Technical Report. Paris: OECD.
Patterson, B. H., Dayton, C. M., & Graubard, B. I. (2002). Latent class analysis of complex sample survey data: Application to dietary data. Journal of the American Statistical Society, 97, 721-734.
Pfeffermann, D., Skinner, C. J., Holmes, D. J., Goldstein, H., & Rasbash, J. (1998). Weighting for unequal selection probabilities in multilevel models. Journal of the Royal Statistical Society, Series B, 60, 23-56.
Queneouille, M. H. (1956). Notes on bias in estimation. Biometrika, 43, 353-360.
Rao, J. N. K., Wu, C. F. J., & Yue, K. (1992). Some recent work on resampling methods for complex surveys. Survey Methodology, 18, 209-217.
Roy, D., & Safiquzzaman, M. (2003). Jackknifing a general class of estimators and variance estimation under two-phase sampling. Metron, 61, 53-74.
Rust, K. F., & Rao, J. N. K. (1996). Variance estimation for complex surveys using replication techniques. Statistical Methods in Medical Research, 5, 283-310.
Sahinler, S., & Topuz, D. (2007). Bootstrap and jackknife resampling algorithms for estimation of regression parameters. Journal of Applied Quantitative Methods, 2, 188-199.
Saigo, H., Shao, J., & Sitter, R. R. (2001). A repeated half-sample bootstrap and balanced repeated replications for randomly imputed data. Survey Methodology, 27, 189-196.
Scheaffer, R. L., Mendenhall III, W., & Ott, R. L. (2006). Elementary Survey Sampling. Duxbury.
Sitter, R. R. (1992). A resampling procedure for complex survey data. Journal of the American Statistical Association, 87, 755-765.
Skinner, C. J. (1989). Domain means, regression and multivariate analysis. In C. J.Skinner, D. Holt, & T. M. F. Smith (Eds.), Analysis of complex surveys (pp. 59-87). New York: Wiley.
Skinner, C. J., Holt, D., & Smith, T. M. F. (1989). Analysis of complex surveys. Chichester, UK: Wiley.
Stapleton, L. (2002). The incorporation of sample weights into multilevel structural equation models. Structural Equation Modeling, 9, 475-502.
Stapleton, L. (2006). An assessment of practical solutions for structural equation modeling with complex sample data. Structural Equation Modeling, 13, 28-58.
Stapleton, L. (2008). Variance estimation using replication methods in structural equation modeling with complex sample data. Structural Equation Modeling, 15, 183-210.
U.S. Department of Education. (2001). ECLS-K, Base year public-use data file, kindergarten class of 1998–99: Data files and electronic code book: (Child, teacher, school files). Washington, DC: National Center for Education Statistics.
Wolter, K. M. (2007). Introduction to variance estimation. New York: Springer -Verlag.
Wu, C. F. J. (1991). Balanced repeated replications based on mixed orthogonal arrays. Biometrika, 78, 181-188.
Wu, C. F. J. (1986). Jackknife, bootstrap, and other resampling methods in regression analysis. The Annals of Statistics, 14, 1343-1350.
Yang, C. C., & Tsai, L. T. (2006). A simulation Study on Computation and Inference Accuracy of Factor Loadings for Large Data Mines. Wseas Trans on Information Science and Application, 12, 2577-2579.
Yang, C. C., & Tsai, L. T. (2007). Weighting effects of stratified sampling procedures on the accuracy of DIF identifications. Paper was presented at the International Meeting of the Psychometric Society (IMPS 2007), Tokyo, Japan.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文