跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/07 07:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:阮氏草
研究生(外文):thao
論文名稱:ExpressionandpurificationofsumoylatedMTF-1inEscherichiacoli
論文名稱(外文):SUMO化金屬感應轉錄因子在大腸桿菌中的表達與純化
指導教授:林立元林立元引用關係
指導教授(外文):LIN,Lih-Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
畢業學年度:97
語文別:英文
論文頁數:58
中文關鍵詞:SumoylationMTF-1MREEMSAPurification of sumoylated protein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
Abstract
The metal-responsive transcription factor-1 (MTF-1) protein is a highly conserved zinc finger protein that is essential for activation of metallothionein genes in response to heavy metals. Although phosphorylation of MTF-1 has been found to regulate expression of MT genes, the other post-translational modifications of this protein has not been described. Herein, we found that MTF-1 could undergo sumoylation by SUMO-1 in E. coli. Using co-transformation of pGEX-MTF-1 wild type (WT) or its sumoylation deficient versions (MTF-1 K14R, K27R and K14R/K627R) with pT-E1/E2/S1-His, a plasmid expressing Aos1, Uba2, Ubc9 and SUMO-1, we identified lysine 627 within 626IKQE629 motif was the major sumoylation acceptor site whereas lysine 14 within 13FKGE16 motif, was the minor one. We also revealed that the unmodified MTF-1 could not be separated completely from the sumoylated form by using a range of purification methods. Therefore, other methods should be employed for purification of the sumoylated protein. Finally, we have initially established the condition of electromobility shift assay (EMSA) for in vitro DNA binding activity of MTF-1 and sumoylated MTF-1, if any, to MRE promoter.
Key words: MTF-1, Sumoylation, Purification of sumoylated protein, MRE, EMSA.
Table of contents
Abstract 1
中文摘要 2
Chapter 1 Introduction 3
1.1. Metal-responsive transcription factor 1 (MTF-1) 3
1.2. Sumoylation 5
Chapter 2 Materials and methods 10
2.1. Chemicals 10
2.2. Construction of protein expression plasmids 10
2.3. Preparation of competent cell 11
2.4. Recombinant protein expression and purification 11
2.5. Combination of different purification techniques 13
2.6. Digestion of GST tag by PreScission Protease 13
2.7. Purification of protein with TALON metal affinity resin 14
2.8. Western blotting 14
2.9. Coomassie brilliant blue staining 15
2.10. Electromobility shift assays (EMSAs) 15
Chapter 3 Results 17
3.1. Expression of sumoylated MTF-1 in Escherichia coli 17
3.2. Mapping the MTF-1 sumoylation site(s) 20
3.3. Purification of sumoylated MTF-1 in Escherichia coli 21
3.4. DNA binding activity assay 24
Chapter 4 Discussion 26
References 32
References
Andrews, G.K., Lee, D.K., Ravindra, R., Lichtlen, P., Sirito, M., Sawadogo, M., and Schaffner, W. (2001) The transcription factors MTF-1 and USF1 cooperate to regulate mouse metallothionein-I expression in response to the essential metal zinc in visceral endoderm cells during early development. EMBO J., 20, 1114–1122.
Auf der Maur, A., Belser, T., Elgar, G., Georgiev, O., and Schaffner, W. (1999) Characterization of the transcription factor MTF-1 from the Japanese pufferfish (Fugu rubripes) reveals evolutionary conservation of heavy metal stress response. Biol. Chem. 380, 175-185.
Bittel, D.C., Dalton, T., Samson, S.L.A., Gedamu, L., and Andrews, G.K. (1998) The DNA binding activity of metal response element-binding transcription factor-1 is activated in vivo and in vitro by zinc, but not by other transition metals. J. Biol. Chem. 273, 7127-7133.
Bohren, K.M., Nadkarni, V., Song, J. H., Gabbay, K. H., and Owerbach, D. (2004) A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes Mellitus. J. Biol. Chem. 279, 27233-27238.
Brugnera, E., Georgiev, O., Radtke, F., Heuchel, R., Baker, E., Sutherland, G.R., and Schaffner, W. (1994) Cloning, chromosomal mapping and characterization of the human metal-regulatory transcription factor MTF-1. Nucleic Acids Res. 22, 3167-3173.
Buschmann, T., Fuchs, S.Y., Lee, C.G., Pan, Z.Q., and Ronai, Z. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell 101, 753-762.
Chen, W.Y., John, J.A., Lin, C.H., and Chang, C.Y. (2002) Molecular cloning and developmental expression of zinc finger transcription factor MTF-1 gene in zebrafish, Danio rerio. Biochem. Biophys. Res. Commun. 291, 798- 805.
Chung, T.L., Hsiao, H. H., Yeh, Y.Y., Shia, H.L., Chen, Y.L., Liang, P.H., Wang, A.H., Khoo, K.H., and Shoei-Lung Li, S. (2004) In vitro modification of human centromere protein CENP-C fragments by small-ubiquitin like modifier (SUMO) protein: definitive identification of modification sites by tandem mass spectrometry analysis of the isopeptides. J. Biol. Chem. 279, 39653-39662.
Comerford, K.M., Leonard, M.O., Karhausen, J., Carey, R., Colgan, S.P., and Taylor, C.T. (2003) Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proc. Natl. Acad. Sci. USA 100, 986–991.
Culotta, V.C., and Hamer, D.H. (1989) Fine mapping of a mouse metallotahionein gene metal response element. Mol. Cell Biol. 9, 1376-1380.
Dalton, T.P., Bittel, D., and Andrews, G.K. (1997) Reversible activation of mouse metal response element-binding transcription factor 1 DNA binding involves zinc interaction with the zinc finger domain. Mol. Cell Biol. 17, 2781-2789.
Dalton, T.P., Solis, W.A., Nebert, D.W., and Carvan III, M.J. (2000) Characterization of the MTF-1 transcription factor from zebrafish and trout cells. Comp. Biochem. Physiol. Biochem. Mol. Biol. 126, 325-335.
Desterro, J.M., Rodriguez, M.S., and Hay, R.T. (1998) SUMO-1 modification of IκBα inhibits NF-κB activation. Mol. Cell 2, 233 - 239.
Green, C.J., Lichtlen, P., Huynh, N.T., Yanovsky, M., Laderoute, K.R., Schaffner, W., and Murphy, B.J. (2001) Placenta growth factor gene expression is induced by hypoxia in fibroblasts: a central role for metal transcription factor-1 Cancer Res., 61, 2696–2703.
G�刡es, C., Heuchel, R., Georgiev, O., M�刜ler, K.H., Lichtlen, P., Bluthmann, H., Marino, S., Aguzzi, A., and Schaffner, W. (1998) Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1 Embo J., 17, 2846–2854.
Hecker, C.M., Rabiller, M., Haglund, K., Bayer, P., and Dikic, I. (2006) Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem. 281, 16117-16127.
Heuchel, R., Radtke, F., Georgiev, O., Stark, G., Aguet, M., and Schaffner, W. (1994) The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J. 13, 2870-2875.
Hietakangas, V., Ahlskog, J. K., Jakobsson, A. M., Hellesuo, M., Sahlberg, N. M., Holmberg, C. I., Mikhailov, A., Palvimo, J. J., Pirkkala, L., and Sistonen, L. (2003) Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1, Mol. Cell. Biol. 23, 2953-2968.
Hilgarth, R.S., Hong, Y., Park-Sarge, O.K., and Sarge, K.D. (2003) Insights into the regulation of heat shock transcription factor 1 SUMO-1 modification. Biochem. Biophys. Res. Commun. 303, 196-200.
Ji, Z., Degerny, C., Vintonenko, N., Deheuninck, J., Foveau, B., Leroy, C., Coll, J., Tulasne, D., Baert, J.-L., and Fafeur, V. (2007) Regulation of the Ets-1 transcription factor by sumoylation and ubiquitinylation. Oncogene 26, 395–406.
Johnson, E. S. (2004) Protein modification by SUMO. Annu. Rev. Biochem. 73, 355-382.
Johnson, E.S., and Gupta, A.A. (2001) An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106, 735-744.
Kagey, M. H., Melhuish, T.A., and Wotton, D. (2003) The polycomb protein Pc2 is a SUMO E3. Cell 113, 127-137.
K�讚i, J.H.R. (1991) Overview of metallothionein. Methods Enzymol. 205, 613-626.
Kerscher, O. (2007) SUMO junction-what’s your function? New insights through SUMO-interacting motifs. EMBO Rep. 8, 550-555.
Kotaja, N., Karvonen, U., Janne, O.A., and Palvimo, J.J. (2002) PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol. Cell. Biol. 22, 5222-5234.
LaRochelle, O., Gagne, V., Charron, J., Soh, J.W., and Seguin, C. (2001) Phosphorylation is involved in the activation of metal-regulatory transcription factor 1 in response to metal ions. J. Biol. Chem. 276, 41879-41888.
Lee, W., Haslinger, A., Karin, M., and Tjian, R. (1987) Activation of transcription by two factors that bind promoter and enhancer sequences of the human metallothionein gene and SV40. Nature 325, 368-372.
Li, T., Evdokimov, E., Shen, R.F., Chiao, C.C., Tekle, E., Wang, T., Stadtman, E.R., Yang, D.C., and Chock, P.B. (2004) Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. Proc. Natl. Acad. Sci. USA 101, 8551-8556.
Lichtlen, P., Wang, Y., Belser, T., Georgiev, O., Certa, U., Sack, R., and Schaffner, W. (2001) Target gene search for the metal-responsive transcription factor MTF-1 Nucleic Acids Res., 29, 1514–1523.
Lin, D.Y., Huang, Y.S., Jeng, J.C., Kuo, H.Y., Chang, C.C., Chao, T.T., Ho, C.C, Chen, Y.C., Lin, T.P., Fang, H.I., Hung, C.C., Suen, C.S., Hwang, M.J., Chang, K.S., Maul, G.G., and Shih, H.M. (2006) Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol. Cell. 24, 341-354.
Melchior, F. (2000) SUMO-nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol. 16, 591-626.
Melchior, F., Schergaut, M., and Pichler, A. (2003) SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem. Sci. 28, 612-618.
Menc�朦, M., and Lorenzo V.D. (2004) Functional transplantation of the sumoylation machinery into Escherichia coli. Protein Expr. Purif. 37, 409-418.
Muller, S., Ledl, A., and Schmidt, D. (2004) SUMO: a regulator of gene expression and genome integrity. Oncogene 23, 1998–2008.
Murphy, B.J., Andrews, G.K., Bittel, D., Discher, D.J., McCue, J., Green, C.J., Yanovsky, M., Giaccia, A., Sutherland, R.M., Laderoute, K.R., and Webster, K.A. (1999) Activation of metallothionein gene expression by hypoxia involves metal response elements and metal transcription factor-1. Cancer Res. 59, 1315 -1322.
Otsuka F., Iwamatsu, A., Suzuki, K., Ohsawa, M., Hamer, D.H., and Koizumi, S. (1994) Purification and characterization of a protein that binds to metal responsive elements of the human metallothionein IIA gene. J. Biol. Chem. 269, 23700-23707.
Palmiter R.D. (1998) The elusive function of metallothioneins. Proc. Natl. Acad. Sci. USA 95, 8428-8430.
Perdomo, J., Verger, A., Turner, J., and Crossley, M. (2005) Role for SUMO modification in facilitating transcriptional repression by BKLF. Mol. Cell. Biol. 25, 1549-1559.
Pichler, A., Gast, A., Seeler, J. S., Dejean, A., and Melchior, F. (2002) The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109-120.
Pichler, A., Knipscheer, P., Oberhofer, E., Van Dijk, W. J., K�宁ner, R., Olsen, J.V., Jentsch, S., Melchior, F., and Sixma, T.K. (2005) SUMO modification of the ubiquitin-conjugating enzyme E2–25K. Nat. Struct. Mol. Biol. 12, 264-269.
Pickart, C.M. (2001) Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503-533.
Radtke F., Georgiev O., Muller H.P., Brugnera E., and Schaffner W. (1995) Functional domains of the heavy metal-responsive transcription regulator MTF-1. Nucleic Acids Res. 23, 2277-2286.
Radtke, F., Heuchel, R., Georgiev, O., Hergersberg, M., Gariglio, M., Dembic, Z., and Schaffner, W. (1993) Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter. EMBO J. 12, 1355-1362.
Sachdev, S., Bruhn, L., Sieber, H., Pichler, A., Melchior, F., and Grosschedl, R. (2001) PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes & Dev. 15, 3088–3103.
Saydam, N., Adams, T.K., Steiner, F., Schaffner, W., and Freedman, J.H. (2002) Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1: identification of signal transduction cascades that control metal-inducible transcription. J. Biol. Chem. 277, 20438-20445.
Schwartz, D. C., and Hochstrasser, M. (2003) A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem. Sci. 28, 321-328.
Seeler, J.-S., and Dejean, A. (2003) Nuclear and unclear functions of SUMO. Nat. Rev. Mol. Cell Biol. 4, 690-699.
Smirnova, I.V., Bittel, D.C., Ravindra, R., Jiang, H.M., and Andrews, G.K. (2000) Zinc and cadmium can promote rapid nuclear translocation of metal response element-binding transcription factor-1. J. Biol. Chem. 275, 9377-9384.
Stuart, G.W., Searle, P.F., and Palmiter, R.D. (1985) Identification of multiple metal regulatory elements in mouse metallothionein-I promoter by assaying synthetic sequences. Nature 317, 828-831.
Stuart, G.W., Searle, P.F., Chen, H.Y., Brinster, R.L., and Palmiter, R.D. (1984) A 12-base-pair DNA motif that is repeated several times in metallothionein gene promoters confers metal regulation to a heterologous gene. Proc. Natl. Acad. Sci. USA 81, 7318-7322.
Takahashi, Y., Kahyo, T., Toh, E.A., Yasuda, H., and Kikuchi, Y. (2001a) Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates. J. Biol. Chem. 276, 48973-48977.
Takahashi, Y., Toh-e, A., and Kikuchi, Y. (2001b) A novel factor required for the SUMO1/Smt3 conjugation of yeast septins. Gene 275, 223-231.
Tatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J.M., Botting, C.H., Naismith, J.H., and Hay, R.T. (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368-35374.
Uchimura, Y., Nakamura, M., Sugasawa, K., Nakao, M., and Saitoh, H. (2004) Overproduction of eukaryotic SUMO-1- and SUMO-2-conjugated proteins in Escherichia coli Anal. Biochem. 331, 204-206.
Vanacore, R.M., Eskew, J.D., Morales, P.J., Sung, L., and Smith, A. (2000) Role for copper in transient oxidation and nuclear translocation of MTF-1, but not of NF-kappa B, by the heme-hemopexin transport system. Antioxid. Redox Signal 2, 739-752.
Wang, Y., Lorenzi, I., Georgiev, O., and Schaffner, W. (2004) Metal-responsive transcription factor-1 (MTF-1) selects different types of metal response elements at low vs. high zinc concentration. Biol. Chem. 385, 623-632.
Wang, Y.-T., Chuang, J.-Y., Shen, M.-R., Yang, W.-B., Chang, W.-C., and Hung, J.-J. (2008) Sumoylation of specificity protein 1 augments its degradation by changing the localization and increasing the specificity protein 1 proteolytic process. J. Mol. Biol. 380, 869-885.
Wei, F., Sch�匜er, H.R., and Atchison, M.L. (2007) Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation. J. Biol. Chem. 282, 21551-21560.
Westin, G., and Schaffner, W. (1988) A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. EMBO J. 7, 3763-3770.
Wimmer, U., Wang, Y., Georgiev, O., and Schaffner, W. (2005) Two major branches of anti-cadmium defense in the mouse: MTF-1/metallothioneins and glutathione. Nucleic Acids Res. 33, 5715–5727.
Yang, M., Hsu, C.-T., Ting, C.-Y., Liu, L.F., and Hwang, J. (2006) Assembly of a polymeric chain of SUMO1 on human Topoisomerase I in vitro. J. Bio. Chem. 281, 8264-8274.
Zhang, B., Egli, D., Georgiev, O., and Schaffner, W. (2001) The Drosophila homolog of mammalian Zinc finger factor MTF-1 activates transcription in response to heavy metals. Mol. Cell Biol. 21, 4505-4514.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top