跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/23 19:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林柏洲
研究生(外文):Lin, Bor-Jou
論文名稱:可撓式有機太陽能電池之刮刀塗佈製程研究
論文名稱(外文):Organic solar cells fabricated by blade-coating on flexible substrates
指導教授:洪勝富孟心飛
指導教授(外文):Horng, Sheng-FuMeng, Hsin-Fei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:90
中文關鍵詞:有機太陽能電池可撓性刮刀塗佈捲軸式連續製程串疊結構
外文關鍵詞:organic solar cellsflexibilityblade-coatingroll to roll continuously fabrication processtandem cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:385
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雖然無機太陽能電池能量轉換效率(PCE)在單層結構已達到24%,但矽原料的來源不穩定且製程機台昂貴、程序複雜,在商業化方面有成本過高的疑慮。相比之下有機太陽能電池不僅製程簡單、成本低廉、質輕易於攜帶,且具備可撓性;刮刀塗佈(blade coating)的技術更可結合捲軸式連續製程(roll to roll process),將有機光電元件朝向大面積、串疊(tandem)結構發展。
在本研究中以共軛高分子P3HT(poly(3-hexylthiophene))和PCBM ([6,6]-phenyl-C61-butyric acid acid methyl ester)混合(blend)當作主動層吸光材料,溶於有機溶劑鄰二氯苯(1,2-Dichlorobenzene, DCB)中,此塊材異質接面(bulk heterojunction, BHJ)能夠增加載子拆解的界面。利用刮刀塗佈的方式將主動層成膜於可撓式基板上,而可撓式基板為已經圖樣化新式銦鋅氧化物(indium zinc oxide, IZO, In2ZnyO3+y)的Polycarbonate(PC)基板。
研究結果顯示出無論是正結構和反結構可撓式有機太陽電池,刮刀塗佈元件的能量轉換效率都可做到和旋轉塗佈並駕齊驅,甚至更高。利用刮刀塗佈主動層製作正結構太陽電池(normal solar cell)上在轉換效率可達2.24%;而相同結構下旋轉塗佈效率最佳為2.29%。而刮刀塗佈在反結構上,轉換效率可達到3.37%甚至大於同結構下之旋轉塗佈之效率3.25%。加上刮刀塗佈有可應用於大面積和捲軸式連續製程的優勢,在軟性基板上使用刮刀塗佈去取代旋轉塗佈已是指日可待。
Although the power conversion efficiency (PCE) of single layer inorganic solar cells have achieved 24%, the supply of silicon ingredient and the machines of complicated fabrication process are expensive, it might take too much cost while commercializing this method. In contrast, polymer solar cells have attracted great attention because of their unique properties such as simple and cost-effective fabrication process, light weight, and flexibility. Photonic devices on flexible substrates will develop toward large area and tandem construction by using the blade coating which combine with roll-to-roll process.
In our work, we blend conjugated polymer P3HT and PCBM as the active layer absorption material. The bulk hetero junction of P3HT and PCBM blending in DCB blade-coated on patterned IZO PC flexible substrates makes the process of exciton diffusion to the charge separation donor-acceptor interface be efficient.
Researches demonstrate that PCE of blade-coating applying in flexible organic solar cell with normal and inverted structure has the same or even better result compare with PCE of spin-coating. The highest PCE of normal cell fabricated by blade coating and spin coating are 2.24%.and 2.29% respectively. For inverted structure we have 3.37% for blade-coating and 3.25% for spin-coating. Additionally, it is an advantage that blade-coating can apply to roll to roll continuously fabrication and large area application. According to these reasons, we can expect that blade-coating can replace spin-coating on flexible substrate in the near future.
摘要 Ⅰ
Abstract Ⅱ
致謝 Ⅲ
目錄 Ⅴ
圖表目錄 Ⅷ

第一章 序論 1
1.1 研究背景 1
1.1-1 能源與太陽能 1 1.1-2 太陽能產業發展 2
1.1-3 有機太陽能電池發展 3
1.2 文獻回顧 9
1.2-1 軟性基板有機太陽能電池 9
1.2-2 刮刀塗佈製程應用於有機光電元件 10
1.3 研究動機 14
1.3-1 軟性基板有機太陽能電池之優勢 14
1.3-2 P3HT與PCBM混合之高效率有機太陽能電池 15
1.4 論文架構 16

第二章 實驗原理 17
2.1 太陽電池基本原理與參數 17
2.1-1 基本原理 17
2.1-2 基本參數 23
2.2 材料特性 27
2.2-1 有機高分子材料簡介 27
2.2-2 主動層 27
2.2-3 有機溶劑 30
2.2-4 電洞傳輸層 30
2.2-5 陽極與陰極材料 31
2.3 研究之結構與能帶理論 32

第三章 實驗流程與介紹 35
3.1 PC/IZO基板蝕刻與圖樣化 35
3.2 元件前置作業 36
3.3 有機高分子元件製作 37
3.3-1 電洞傳導層PEDOT:PSS之成膜 37
3.3-2 主動層溶液之調配 38
3.3-3 主動層之成膜 38
3.3-4 陰極電極之蒸鍍 40
3.3-5 元件之封裝 41
3.4 光電元件量測 42
3.4-1 I-V光電特性量測 42
3.4-2 α-step厚度量測 42
3.4-3 紫外光-可見光光譜儀量測(UV-vis Spectrophotometer) 43

第四章 實驗結果討論 44
4.1 實驗設計與架構 44
4.2 刮刀塗佈製程應用於可撓式有機太陽能電池 46
4.2-1 電洞傳輸層的選擇 46
4.2-2 主動層溶液濃度對厚度的關係 49
4.2-3 主動層退火溫度比較 52
4.2-4 六甲基二矽氮烷(HMDS)解決鄰二氯苯(DCB)內聚問題 54
4.2-5 加入HMDS後,主動層退火溫度比較 58
4.2-6 溫度對刮刀塗佈成膜的影響 60
4.3 比較刮刀塗佈與旋轉塗佈製程之有機太陽能元件特性 64
4.3-1 HMDS改變表面張力之正結構 65
4.3-2 表面張力(surface tension)對成膜的影響 71
4.3-3 三氧化鉬(MoO3)之正結構 76
4.3-4 氧化鋅(ZnO)之反結構 81

第五章 總結與未來展望 85

參考文獻 86
1. D. M. Chapin, C. S. Fuller, and G.L. Pearson, “A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys. 25, 676 (1954).
2. Zhao, A. Wang, and M. A. Green, “24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates,” Prog. Photovolt. : Res. Appl. 7, 471 (1999).
3. K. Sriprapa and P. Sichanugrist, “High efficiency amorphous/microcrystalline silicon solar cell fabricated on metal substrate,” Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on Volume 3, 2799 (2003).
4. M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hason, and R. Noufi, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt. : Res. Appl. 7, 311 (1999).
5. K.M.Coakley and M.D.McGehee, “Conjugated polymer photovoltaic cells,” Chem. Mater. 16, 4533 (2004).
6. Harald Hoppe, and Niyazi Serdar Sariciftci, “Organic solar cell: An review,” J. Mater. Res. , Vol. 19, No. 7, (2004).
7. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science 258, 1474 (1992).
8. C.W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48, 183 (1986).
9. B. O’Regan and M. A. Grätzel, “A low cost, high efficiency solar cell based on
dye-sensitized colloidal TiO2 films,” Nature 353, 737 (1991).
10. website of “Research Institute of Innovative Technology for the Earth, RITE” (http://www.rite.or.jp/).
11. G. Yu, K. Pakbaz, and A. J. Heeger, “Semiconducting polymer diodes: Large size low cost photodetectors with excellent visible-ultraviolet sensitivity,” Appl. Phys. Lett. 64, 3422 (1994).
12. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger. Adv. Funct. Mater. 15, 1617 (2005).
13. K. Kim, J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Role of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics,” Appl. Phys. Lett. 90, 163511 (2007).
14. G. YU, A. Heeger et al, science 270, 1789 (1995).
15. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar Cell Efficiency Tables (Version 31),” Prog. Photovolt. : Res. Appl. 16, 61 (2008).
16. Bülent M. Basol, Vijay K. Kapur,”Flexible and light weight copperindium diselenide solar cells on polyimide substrates,” Solar Energy Materials & Solar Cells 43, 93 (1996).
17. A. K. Pandey and J. M. Nunzi, “Efficient flexible and thermally stable pentacene/C60 small molecule based organic solar cells,” Appl. Phys. Lett. 89, 213506 (2006).
18. T. Miyasaka and Y. Kijitori. J. Electrochem. Soc. 151, A1767 (2004)
19. C. J. Brabec, F. pandinger,”Realization of Large Area Flexible Fullerene-Conjugate Polymer Photocells: A Route to Plastic Solar Cell,” Synthetic Metals 102, 861 (1999).
20. M. Al-Ibrahim, H. K. Roth, and S. Sensfuss. Appl. Phys. Lett. 85, 1481 (2004).
21. T. Miyasaka, M. Ikegami, Y. Kijitori. J. Electrochem. Soc. 154, A455 (2007).
22. S. R. Tseng, H. F. Meng, K. C. Lee, and S. F. Horng. Appl. Phys. Lett. 93, 153308 (2008).
23. S. S. Kim, S. I. Na, J. Jo, G. Tae, and D. Y. Kim. Adv. Mater. 19, 4410 (2007).
24. Roland Steim, Stelios A. Choulis, Pavel Schilinsky, and Christoph J. Brabec. Appl. Phys. Lett. 92, 093303 (2008).
25. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).
26. K. Kim, J. Liu, M. A. G. Namboothiry, and D. L. Carroll,“Role of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaic,” Appl. Phys. Lett. 90, 163511 (2007).
27. W. U. Huynh, J. J. Dittmer, N. Teclemariam, D. Milliron, and A. P. Alivisatos, K. W. J. Barnham, “Charge Transport in Hybrid Nanorod-Polymer Composite Photovoltaic Cells,” Phys. Rev. B 67, 115326 (2003).
28. C. J. Brabec, S. E. Shaheen, C. Winder, and N. S. Sariciftci, “Effect of LiF/metal electrodes on the performance of plastic solar cells,” Appl. Phys. Lett. 80, 1288 (2002).
29. R.N. Marks, J.J.M. Halls, D.D.C. Bradley, R. H. Friend, A. B. Holmes,.J. Phys. : Condens. Matter. 6, 1379 (1994).
30. H. Kim, S-H. Jin, H. Suh, and K. Lee, “Origin of the open circuit voltage in conjugated polymer-fullerene photovoltaic cells,” In Organic Photovoltaics IV, edited by Z.H. Kafafi, and P.A. Lane, Proceedings of the SPIE, Vol. 5215, p. 111 (SPIE, Bellingham, WA, 2004).
31. H. Hoppe, and N. S. Sariciftci, “ Organic solar cells: An overview,” J. Mater. Res. 19, 1924 (2004).
32. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction
photovoltaic cell,” Appl. Phys. Lett. 68, 3120 (1996)
33. Theander, A. Yartsev, D. Zigmantas, V. Sundström, W. Mammo, M. R. Anderson, and O. Inganäs, “Photoluminescence quenching at a polythiophene/C60 heterojunction,” Phys. Rev. B, 61, 12957 (2000).
34. T. J. Savenije, J. M. Warman, and A.Goossens, “Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer,” Chem. Phys. Lett. 287, 148 (1998).
35. A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldman, U. Scherf, E. Harth, A. Gügel, and K. Müllen, “Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures,” Phys. Rev. B, 59, 15346 (1999).
36. Harald Hoppe, and Niyazi Serdar Sariciftci,“Organic solar cell: An review,” J. Mater. Res., Vol. 19, No. 7 (2004).
37. K. M. Coakley and M. D. McGehee, “Conjugated polymer photovoltaic cells,” Chem. Mater. 16, 4533 (2004).
38. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature, 401, 685 (1999).
39. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. V. Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk. Nat. Mater. 2, 678 (2003).
40. L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom. Appl. Phys. Lett. 88, 093511 (2006).
41. X. M. Ding, L. M. Hung, L. F. Cheng, Z. B. Deng, X. Y. Hou, C. S. Lee, and S. T. Lee. Appl. Phys. Lett. 76, 2704 (2000).
42. E. Ahlswede, W. Mühleisen, M. Wahinuddin bin Moh Wahi, J. Hanisch, and M. Powalla. Appl. Phys. Lett. 92, 143307 (2008).
43. Myung-Gyu Kang, Myung-Su Kim, Jinsang Kim, and L. Jay Guo. Adv. Mater. 20, 1–6 (2008).
44. M. M. Mandoc, L. J. A. Koster, andP. W. M. Blom. Appl. Phys. Lett. 90, 133504 (2007).
45. K. Kim, J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Role of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics,” Appl. Phys. Lett. 90, 163511 (2007).
46. Y. Zhao, Z. Xie, Y. Qu, Y. Geng, and L. Wang, Appl. Phys. Lett. 90, 043504 (2007).
47. W Wang, H B Wu, C Y Yang, C Luo, Y Zhang, J W Chen, and Yong Cao. Appl. Phys. Lett. 90, 183512 (2007).
48. G. Li, V. Shrotriya, Y. Yao, Y. Yang, J. Appl. Phys. 98, 043704 (2005).
49. W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger. Adv. Funct. Mater. 15, 1617 (2005).
50. C. N. Hoth, S. A. Choulis, P. Schilinsky, and C. J. Brabec. Adv. Mater. 19, 3973 (2007).
51. M. Morana, P. Koers, C. Waldauf, M. Koppe, D. Muehlbacher, P. Denk, M. Scharber, D. Waller, and C. Brabec, Adv. Funct. Mater. 17, 3274 (2007).
52. M. Al-Ibrahim and O.r Ambacher, S. Sensfuss, and G. Gobsch, Appl. Phys. Lett. 86, 201120 (2005).
53. C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X.i Kong, W. Dong, C. Liu, and W. Chena, Appl. Phys. Lett. 93, 193307 (2008).
54. C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, and C. J. Brabec, Appl. Phys. Lett. 89, 233517 (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top