跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 23:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:石東益
研究生(外文):Shih,Toung-Yi
論文名稱:利用掃描式電子顯微鏡之微探針系統結合四點探針技術對於環境測試後之無鉛焊料進行電性分析與探討
論文名稱(外文):Electrical Measurement by SEM Nano-probing System Combined with Four Points Probes (4pp) Method for Lead Free Solder after Environment Tests
指導教授:杜正恭杜正恭引用關係
指導教授(外文):Duh,Jenq-Gong
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:197
中文關鍵詞:電性分析掃描式電子顯微鏡之微探針系統四點探針技術無鉛焊料環境測試介金屬化合物
外文關鍵詞:Electrical MeasurementSEM Nano-probing SystemEnvironment TestsFour Points Probes (4pp) MethodLead Free Solder afterIMC layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:890
  • 評分評分:
  • 下載下載:237
  • 收藏至我的研究室書目清單書目收藏:2
Flip chip technology (FCT) with ball grid array interconnection has attracted a great deal of attention in today’s microelectronic packaging. In flip chip technology, one of the challenging issues is the material selection for under bump metallization (UBM). The Ni-based UBM is of interest in FCT owing to the lower growth rate of the Ni-Sn compound and limited spalling effect. In this study, the elemental distribution and related phase transformation between lead-free and eutectic solders and Cu/Ni(V)/Ti UBMs were investigated with the aid of quantitative analysis with an electron probe microanalyzer. Various types of IMC, such as (Cu1-x,Agx)6Sn5, (Cu1-y,Agy)3Sn and (Ag1-z,Cuz)3Sn were observed.
The major task of this study is to evaluate the electrical characteristics in the IMC for the solder joint. Conventionally, the two-point method could only derive the resistance data, which failed to provide effective reference in the industry. To accurately determine the resistivity performance of IMC, a novel method incorporated with SELA-EM2 and FIB was developed to prepare the joint sample. It was demonstrated that more accurate evaluation of resistivity in IMCs could be achieved by this innovative technique. The SEM nano-probing with the four-points probing method to measure resistivity of a lead free solder ball was proposed. In this study, more accurate IMC/solder joint resistivity can be measured by utilizing the reliable system which integrates the SEM nano-probing technique, the four-points probing method and the precise cutting method (SELA and FIB) together, which was introduced to evaluate the electric characteristics in the intermetallic compounds of solder joints after various test conditions. The electric data would be correlated to microstructural evolution due to the interfacial reaction between solder and UBM.
The electrical properties of FC-BGA lead-free solder joints after various environmental tests among temperature cycle tests (TCT) from 200 to 1000 cycles, high temperature storage tests (HTST) from 500 to 2000 hrs and highly accelerate stress test (HAST) were evaluated. The resistivity comparison among different environment test conditions, such as TCT, HAST and HTST, was studied. The results conclusively showed that the resistivity of every component in the solder joint could be precisely measured. Moreover, results of resistivity, which were constants in repeated measurements, (6 points/location) indicated the reliability of the data. By comparing electrical resistivities of data for overall resistivity in solder joint, the order was solder ball [Sn-3.5Ag-0.5Cu] (51.3 %) >Cu6Sn5 (36.2 %,)> Cu3Sn (6.6 %) >Ag3Sn (5.9 %) among all environmental tests.
In addition, the effect of sample thickness on the electrical properties for thin IMC layers (Cu6Sn5 and Cu3Sn) formed within lead free solder was investigated by using the in situ resistance measurement equipped in TEM, along with treated samples ion milled through precision etching and Selected Area Diffusion Pattern (SADP) technique. It is demonstrated that the SEM/TEM combined with 4pp method display the capability to measure straight resistivity in tiny areas of the IMC layer. This advanced technique provides the receptivity information of solder joint material in the assembly technology.
Contents
List of Tables............................................................................................ IV
Figures Caption....................................................................................... VI
Abstract.................................................................................................... XIV
Chapter I Introduction............................................................................ 1
1.1 Background................................................................................... 1
1.2 Motivations and Goals in This Study............................................ 2
1.2.1 Electrical Characteristics for Sn-Ag-Cu Solder Bump
with Ti/Ni(V)/Cu Under-Bump-Metallization after
Temperature Cycling Tests…………………………….... 3
1.2.2 Extensive Electrical Measurement in Lead-Free Solder
Assembly after Environmental Tests by SEM Internal
Probing Technique……………………………................. 3
1.2.3 Electrical Measurement with Four Points Probes for
Sn-Ag-Cu Solder Joints after Various Environment
Tests……………………………....................................... 4
1.2.4 In situ electrical measurements and manipulation of IMC
layer in lead free solder balls by high-resolution
transmission electron microscopy (HR-TEM).................. 5
Chapter II Literature Review................................................................. 6
2.1 Electronic Package....................................................................... 6
2.2 Flip Chip Technology................................................................... 6
2.3 Solder Bump................................................................................. 7
2.3.1 Solder Materials.................................................................. 7
2.3.2 SnPb Solder......................................................................... 8
2.3.3 Lead-Free Solder................................................................. 10
2.4 Under Bump Metallization........................................................... 11
2.4.1 Cu-Based UBM.................................................................. 11
2.4.2 Ni-Based UBM................................................................... 12
2.4.2.1 Electroplated Ni........................................................ 12
2.4.2.2 Electroless Ni-P (EN)............................................... 12
2.4.2.3 Sputtered Ni(V)......................................................... 13
2.5 Metallurgical Reactions in Solder Joints...................................... 13
2.5.1 Metallurgical Reactions between Solders and Cu-Based
UBM................................................................................... 14
2.5.2 Metallurgical Reactions between Solders and Ni-Based
UBM................................................................................... 14
2.6 Electrical Measurements of Solders …………………………… 17
2.7 Electrical and Mechanical Measurements of Pb-Free Solders 18
After Wave Soldering…………………………………………..
2.8 Conventional 4pp Basics and Theory…………………………... 19
2.9 Reduction of positional errors in a four-point probe resistance 20
Measurement……………………………………………………
Chapter III Experimental Procedure.................................................... 48
3.1 Fabrication of Joints and Environmental Treatment.................... 48
3.1.1 Lead Free FC-BGA Specimens……………….................. 48
3.1.2 Environmental Tests for Sn-3.5Ag-0.5Cu lead-free
solder……………………………………………………... 48
3.2 Sample Preparation....................................................................... 49
3.2.1 The sample preparation of cross-sectional observation
for EPMA………………………………………………... 49
3.2.2 The sample preparation of cross-sectional sample for
Electrical Measurement 50
3.3 Characterization and Analysis....................................................... 51
3.3.1 Microstructure Evolution.................................................... 51
3.3.2 Composition Analysis......................................................... 52
3.3.3 Electrical Analysis and Test…………………………….... 52
Chapter IV Results and Discussion…………………………………… 67
4.1 Electrical measurement between the Sn-3.5Ag-0.5Cu solder
and Ti/Ni(V)/Cu Under-Bump-Metallization after Temperature
Cycling Tests (TCT)…………………………………………….. 67
4.2 Extensive Electrical Measurement in Lead-Free Solder
Assembly after Environmental Tests by SEM Internal Probing
Technique……………................................................................... 83
4.3 Electrical Measurement with Four Points Probes for Sn-Ag-Cu
Solder Joints after Various Environment Tests (Temperature
Cycling Tests (TCT) from 0 cycles to 1000 cycles, High
Temperature Storage Tests (HTST) from 500 to 2000 hrs and
HAST.)…………………………………………………………... 95
4.4 In situ electrical measurements and manipulation of IMC layer
in lead free solder balls by high-resolution transmission electron
microscopy (HR-TEM)………………………………………….. 112
Chapter V Conclusions………………………………………………… 132
References……………………………………………………………….. 135
個人簡歷………………………………………………………………… 147
自傳............................................................................................................ 148
Publication Lists………………………………………………………... 150
Appendix A : Local resistance measurements via four points probe
(4pp) method in eutectic solder assembly after
temperature cycling test by SEM Internal probing
technique……………....……………………………….... 151
Appendix B : Decapsulation Method for Flip Chip with Ceramics
in Microelectronic Package…………………………….. 177
References
1.L.F. Miller, “Controlled collapse reflow chip joining”, IBM J. Res. Develop. 13, 239 (1969).
2.B.L. Young and J.G. Duh, “Interfacial reaction and microstructural evolution for electroplated Ni and electroless Ni in the under bump metallurgy with 42Sn-58Bi solder during annealing”, J. Electron. Mater. 30 878 (2001).
3.M. Li, F. Zhang, W.T. Chen, K. Zeng, K.N. Tu, H. Balkan and P. Elenius, “Interfacial microstructure evolution between eutectic SnAgCu solder and Al/Ni(V)/Cu thin film”, J. Mater, Res. 17, 1612 (2002).
4.K.S. Bae and S.J. Kim, “Microstructure and adhesion properties of Sn-0.7Cu/Cu solder joints”, J. Mater. Res. 17, 743 (2002).
5.H.W. Miao and J.G. Duh, “Microstructure evolution in Sn-Bi and Sn-Bi-Cu solder joints under thermal aging”, Mater. Chem. Phys. 71, 255 (2001).
6.D.R. Frear, J.W. Jang, J.K. Lin and C. Zang, “Pb-free solders for flip-chip interconnects”, JOM, 53, 28 (2001).
7.M. McCormack, S. Jin, G.W. Kammlott and H.S .Chen, “New Pb-free solder alloy with superior mechanical-properties”, Appl. Phys. Lett. 63, 15 (1993).
8.K. Suganuma, “Advances in lead-free electronics soldering”, Current Opinion Solid State Mater. Sci 5, 55 (2001).
9.K.S. Kim, S.H. Huh and K. Suganuma, “Effects of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys”, Mater. Sci. Eng. A 333, 106 (2002).
10.J.H. Lau, T. H. Low, B.S. Xiong, LH Xu and C.C. Neo, Thin Solid Films, 370, 462-463 (2004).
11.J.H. Lau, T. H. Low, B. S. Xiong and F. X. Che. “Design For Reliability (DFR) Methodology for Electronic Packaging Assemblies”, Proceedings of IEEE, 2003 Electronics Packaging Technology Conference, Singapore, pp. 470-478 (2003).
12.G.Y. Jang and J.G. Duh, “The Effect of Intermetallic Compound Morphology on Cu Diffusion in Sn-Ag and Sn-Pb Solder Bump on the Ni/Cu Under-Bump Metallization”, Journal of Electronic Materials, 34 [1] pp.677-682 (2005).
13.Y.C. Lin, J.G. Duh and B.S. Chiou, J. Electron. Mater. 35, 7 (2006).
14.C.S. Huang, J.G. Duh, Y.M. Chen and J.H. Wang, “Effects of Ni thickness and reflow times on interfacial reactions between Ni/Cu under-bump metallization and eutectic Sn-Pb solder in flip-chip technology”, J. Electron. Mater. 32, 89 (2003).
15.C.S. Huang, J.G. Duh and Y.M. Chen, “Metallurgical reaction of the Sn-3.5Ag solder and Sn-37Pb solder with Ni/Cu under-bump metallization in a flip-chip package”, J. Electron. Mater. 32, 1509 (2003).
16.C.S. Huang and J.G. Duh, “Interface reactions and phase equilibrium between Ni/Cu under-bump metallization and eutectic SnPb flip-chip solder bumps”, J. Mater. Res. 18, 935 (2003).
17.C.S. Huang, G.Y. Jang and J.G. Duh, “Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps”, J. Electron Mater, 33, 283 (2004).
18.A.A. Liu, H.K. Kim, K.N. Tu and P.A. Totta, “Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films”, J. Appl. Phys. 80, 2774 (1996).
19.H.K. Kim, K.N. Tu and P.A. Totta, “Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joint on Si wafer”, Appl. Phys. Lett. 68, 2204 (1996).
20.S.Y. Jang, J. Wolf, O. Ehrmann, H. Gloor, T. Schreiber and H. Reichl, et al. IEEE T Compon Pack T 26:245 (2003).
21.C.E. Ho, R. Zheng, G.L. Luo, A.H. Lin and C.R. Kao, “Formation and resettlement of (AuxNi1-x)Sn4 in solder joints of ball-grid-array packages with the Au/Ni surface finish”, J. Electron. Mater. 29 1175 (2000).
22.C.E. Ho, L.C. Shiau and C.R. Kao, “Inhibiting the formation of (Au1-xNix)Sn4 and reducing the consumption of Ni metallization in solder joints”, J. Electron. Mater. 31 1264 (2002).
23.K.L. Lin and Y.C. Liu, “Reflow and property of Al/Cu/electroless Nickel/Sn-Pb solder bumps”, IEEE Trans. on Adv. Packag. 22, 575 (1999).
24.J.Y. Park, C.W. Yang, J.S. Ha, C.U. Kim, E.J. Kwon, S.B. Jung and C.S. Kang, “Investigation of interfacial reaction between Sn-Ag eutectic solder and Au/Ni/Cu/Ti thin film metallization”, J. Electron. Mater. 30, 1165 (2001).
25.J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear and P. Thompson, “Solder reaction-assisted crystallization of electroless Ni-P under bump metallization in low cost flip chip technology”, J. Appl. Phys. 85, 8456 (1999).
26.C.Y. Liu, K.N. Tu, T.T. Sheng, C.H. Tung, D.R. Frear and P. Elenius, “Electron microscopy of interfacial reaction between eutectic SnPb and Al/Ni(V)/Cu thin film metallization”, J. Appl. Phys. 87, 750 (2000).
27.M. Li, F. Zhang, W.T. Chen, K. Zeng, K.N. Tu, H. Balkan and P. Elenius, “Interfacial microstructure evolution between eutectic SnAgCu solder and Al/Ni(V)/Cu thin film”, J. Mater, Res. 17, 1612 (2002).
28.T.I. Shih, T. Hsu, Y.C. Lin and J.G. Duh.” Electrical Characteristics for Sn-Ag-Cu Solder Bump with Ti/Ni/Cu under-Bump Metallization after Temerature Cycling Tests”, J. Electron. Mater. 25, 1113 (2006).
29.T.I. Shih, Y.C. Lin, J.G. Duh, T. Hsu, W.S. Wu,” Extensive Electrical Measurement in Lead-Free Solder Assembly after Environmental Tests by SEM Internal Probing Technique”, Journal of Materials, 59 (2007).
30.R.R. Tummala and E. J. Rymaszewski, Microelectronics packaging handbook, 2nd edition, Van Nostrand Reihold, New York, (1997).
31.J.H. Lau, Ball grid array technology, McGraw-Hill, New York, (1995).
32.P.A. Totta, R.P. Sopher, “SLT device metallurgy and its monolithic extensions” IBM J. Res. Develop. 13, 226 (1969).
33.J.H. Lau and S.W.R. Lee, Chip scale package, CSP: Design, Materials, Process and Applications, McGraw-Hill, New York, (1999).
34.K.N. Tu and K. Zeng, “Tin-lead (SnPb) solder reaction in flip chip technology”, Mater. Sci. Eng. R 34, 1 (2001).
35.C.A. Harper, Electronic packaging and interconnection handbook, 3rd edition, McGraw-Hill, New York, (2000).
36.J.W. Morris, J.L.F. Goldstein and Z. Mei, “Microstructure and mechanical properties of Sn-In and Sn-Bi solder”, JOM 45, 25 (1993).
37.R.E. Reed-Hill and R. Abbaschian, Physical metallurgy principles, PWS, Boston, (1994).
38.W.R. Lewis, Notes on soldering, Tin Research Institute, 66, (1961).
39.M. Abtew and G. Selvaduray, “Lead-free solders in microelectronics”, Mater. Sci. Eng. R 27, 95 (2000).
40.K. Zeng and K.N. Tu, “Six cases of reliability study of Pb-free solder joints in electronic packaging technology”, Mater. Sci. Eng. R 38, 55 (2002).
41.S. Topani, S. Gopakumar, P. Borgesen and K. Srihari, “Reliability of lead-free solder interconnections-A review”, 2002 annual reliability and maintainability symposium, Piscataway, NJ: IEEE, pp.423 (2002).
42.J.S. Hwang, Modern solder technology for competitive electronics manufacturing, McGraw-Hill, New York, (1996).
43.K. Suganuma, Environmentally Conscious Design and Inverse Manufacturing, Piscataway, NJ: IEEE, p. 620 (1999).
44.Y. Kariya, Y. Hirata and M. Otsuka, “Effect of thermal cycles on the mechanical strength of quad flat pack leads/Sn-3.5Ag-X (X = Bi and Cu) solder joints”, J. Electron. Mater. 28, 1263 (1999).
45.M.E. Loomans and M.E. Fine, “Tin-silver-copper eutectic temperature and composition”, Metal. Mat. Trans. A 31, 1155 (2000).
46.T.M. Korhonen, P. Su, S.J. Hong, M.A. Korhonen and C.Y. Li, “Reactions of lead-free solders with CuNi metallizations”, J. Electron. Mater. 29, 1194 (2000).
47.J.H. Lau, Flip Chip Technologies, McGraw-Hill, New York, pp. 26-30 (1996).
48.R.G. Werner, D.R. Frear, J. DeRosa and E. Sorongon, “Flip chip packaging” 1999 Int. Symp. on Advanced Packaging Materials (Braselton, GA, USA), pp. 246-251 (1999).
49.F.A. Lowenheim, Modern electroplating, 2nd edition, Wiley, New York, (1974).
50.P. Nash, Phase diagrams of binary nickel alloys, ASM International, (1991).
51.R.C. Agarwala and S. Ray, “Variation of structure in electroless Ni-P films with phosphorous content”, Z. Metallkd. 79, 472 (1988).
52.J.H. Yeh, “Interfacial reactions and wetting property between electroless Ni in the under bump metallurgy (UBM) and Sn-37Pb solder”, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (2000).
53.S.V.S. Tyagi, V.K. Tondon, and S. Ray, “Study of the crystallization behavior of electroless Ni-P films by electron and x-ray diffraction”, Z. Metallkd. 76, 492 (1985).
54.K. Zeng and J.K. Kivilahti, “Use of multicomponent phase diagrams for predicting phase evolution in solder/conductor systems”, J. Electron. Mater. 30, 35 (2001).
55.T.B. Massalski; H. Okamoto, P.R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams, ASM Int., Materials Park, Ohio, pp. 1481-1483 (1990).
56.G.Z. Pan, A.A. Liu, H.K. Kim, K.N. Tu and P.A. Totta, “Microstructures of phased-in Cr–Cu/Cu/Au bump-limiting metallization and its soldering behavior with high Pb content and eutectic PbSn solders”, Appl. Phys. Lett. 71, 2946 (1997).
57.P.G. Kim, J.W. Jang, T.Y. Lee, K.N. Tu, “Interfacial reaction and wetting behavior in eutectic SnPb solder on Ni/Ti thin films and Ni foils”, J. Appl. Phys. 86, 6746 (1999).
58.G. Ghosh, “Kinetics of interfacial reaction between eutectic SnPb solder and Cu/Ni/Pd metallizations”, J. Electron. Mater. 28, 1238 (1999).
59.W.G. Bader, “Dissolution of Au, Ag, Pd, Pt, Cu, and Ni in a molten tin-lead solder”, Weld. J. Res. Suppl. 28, 551s (1969).
60.C.Y. Lee and K.L. Lin, “Preparation of solder bumps incorporating electroless nickel-boron deposit and investigation on the interfacial interaction behavior and wetting kinetics”, J. Mater. Sci.: Mater. Electron. 8, 377 (1997).
61.K.C. Huang, Y.C. Chan, C.W. Tang and H.C. Ong, “Correlation between Ni3Sn4 intermetallics and Ni3P due to solder reaction-assisted crystallization of electroless Ni-P metallization in advanced packages”, J. Mater. Res. 15, 2534 (2000).
62.K.C. Huang and Y.C. Chan, “Study of Ni3P growth due to solder reaction-assisted crystallization of electroless Ni-P metallization”, J. Mater. Sci. Lett. 19, 1755 (2000).
63.P. Liu, Z. Xu, J.K. Shang, “Thermal stability of electroless-Ni/solder interfaces”, Metall. Mater. Trans. A 31, 2857 (2000).
64.C.S. Huang, J.H. Yeh, B.L. Young and J.G. Duh, “Phenomena of electroless Ni-P (EN) and intermetallic compound stripping and dissolving in Sn-Bi and Sn-Pb solder joints with Au/EN/Cu metallization”, J. Electron. Mater. 31, 1230 (2002).
65.S.K. Kang, D.Y. Shih, K. Fogel, P. Lauro, M.J. Yim, G. Advocate, M. Griffin, C. Goldsmith, D.W. Henderson, T. Gosselin and D. King, J. Konrad, A. Sarkhel and K.J. Puttlitz, “Interfacial reaction studies on lead (Pb)-free solder alloys”, Electronic Components and Technology Conference, pp.448-454 (2001).
66.J.W. Jang, D.R. Frear, T.Y. Lee and K.N. Tu, “Morphology of interfacial reaction between lead-free solders and electroless Ni-P under bump metallization”, J. Appl. Phys. 88, 6359 (2000).
67.S. Ahat, L. Du, M. Sheng, L. Luo, W. Kempe and J. Freytag, “Effect of aging on the microstructure and shear strength of SnPbAg/Ni-P/Cu and SnAg/Ni-P/Cu solder joints”, J. Electron. Mater. 29, 1105 (2000).
68.T.B. Massalski; H. Okamoto, P.R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams, ASM Int., Materials Park, Ohio, p. 96 (1990).
69.Anon., Database for Solder Properties with Emphasis on New Lead-Free Solders, National Institute of Standards and Technology and Colorado School of Mines, Golden, Colorado, February 11, (2002).
70.B.A. Cook, I.E. Anderson, J.L. Harringa, and R.L. Terpstra., “Effect of Heat Treatment on the Electrical Resistivity of Near-Eutectic Sn-Ag-Cu Pb-free Solder Alloys,” J. Electron. Mater., 31, pp. 1190-94 (2002).
71.R. Kisiel., “Resistivity of Lead-Free Solder Joints” in Proc. ISSE’98, 21st International Spring Seminar on Electronics Technology, Neusiedl am See, Austria, May 4-7, Institute of Materials Science for Electrical Engineering, Vienna University of Technology, Vienna, Austria, pp. 32-33. (1998).
72.R. Kisiel, W. Gasior, Z. Moser, J. Pstrus, K. Bukat, and J. Sitek., “(Sn-Ag)eut + Cu Soldering Materials, Part II: Electrical and Mechanical Studies,” Journal of Phase Equilibria and Diffusion Vol. 25 No. 2. pp. 122-124 (2004).
73.S. Ahat, L. Du, M. Sheng, L. Luo, W. Kempe and J. Freytag, “Effect of aging on the microstructure and shear strength of SnPbAg/Ni-P/Cu and SnAg/Ni-P/Cu solder joints”, J. Electron. Mater. 29, 1105 (2000).
74.T.B. Massalski; H. Okamoto, P.R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams, ASM Int., Materials Park, Ohio, p. 96 (1990).
75.H.S. Liu, J. Wang, Y. Du, and Z.P. Jin, “Thermodynamic description of the Au-Al system”, Z. Metallkd. 95, 45 (2004).
76.D. Golberg, P. Dorozhkin, Y. Bando, and Z. C. Dong. Chem. Phys. Lett. 359: 220–228 (2002).
77.P. Dorozhkin, D. Golberg, Y. Bando, and Z. C. Dong. Appl. Phys. Lett. 81: 1083–1085 (2002).
78.T. Kizuka, H. Ohmi, T. Sumi, K. Kumazawa, S. Deguchi, M. Naruse, S. Fujisawa, S. Sasaki, A. Yabe, and Y. Enomoto. Jpn. J. Appl. Phys. 40: 170–173 (2001).
79.R.P. Gao, Z.W. Pan, and Z.L. Wang. Appl. Phys. Lett. V78: 1757–1759 (2001).
80.D.C. Worledge, Appl. Phys. Lett. V84, Number 10-14 (2004).
81.S. Paulson, M.R. Falvo, N. Snider, A. Helser, T. Hudson, A. Seeger, R. M. Taylor, R. Superfine, and S. Washburn. Appl. Phys. Lett. 75: 2936–2938 (1999).
82.Z.L. Wang, P. Poncharal, and W.A. de Heer. J. Phys. Chem. Sol. 61: 1025–1030. (2000)
83.F. Zhang, M. Li, C.C. Chum, and K.N. Tu, “Influence of substrate metallization on diffusion and reaction at the under-bump metallization/solder interface in flip-chip packages”, J. Mater. Res. 17, 2757 (2002).
84.M.E. Loomans, S. Vaynman, G. Ghosh and M.E. Fine, “Investigation of multi-component lead-free solders”, J. Electron. Mater. 23, 741 (1994).
85.M.H. Francombe, A.J. Noreika, and W.J. Takei, “Thin film and bulk structures of phases in the system gold-aluminum”, Thin Solid Films 1, 353 (1967-1968).
86.E. Philofsky, “Intermetallic formation in gold-aluminum systems”, Solid State Electron. 13, 1391 (1970).
87.N.J. Noolu, N. Murdeshwar, K. Ely, J. Lippold, and W. Baeslack III, “Partial diffusion reactions and the associated volume changes in thermally exposed Au-Al ball bonds”, Metall. Mater. Trans. A 35, 1273 (2004).
88.K.N. Tu, J.W. Mayer, and L.C. Feldman, Electronic Thin Film Science for Electrical Engineers and Materials Scientists, Macmillan, New York, pp. 302-333 (1992).
89.M. Li, C. Li, F. Wang, D. Luo, and W. Zhang, “Thermodynamic assessment of the Al–Au system”, J Alloy. Compd. 385, 199 (2004).
90.H.S. Chang, J.X. Pon, K.C. Hsieh, and C.C. Chen, “Intermetallic growth of wire-bond at 175 degrees C high temperature aging”, J. Electron. Mater. 30, 1171 (2001).
91.J.I. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J.R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, Plenum, New York, pp. 391-420 (2003).
92.G. K. Reeves and H. B. Harrison. IEEE Electron Device Letters, Vol. EDL-3, No. 5, May, pp.111-113 (1982).
93.J.H. Robert, B. John and Y. Win. IEEE 0-7803-8191-2 (2004).
94.L.J. van der Pauw. Philips Res. Rep., vol. 13, pp.1~9 (1958)
95.M. He, W.H. Lau, G. Qi and Z. Chen, Thin Solid Films 462–463 (2004).
96.The science and engineering of materials, Chapter 17, Donald R. Askeland, Copyright (1984)
97.B. Jones, Phys. Teach. 31, 48–49 (1993).
98.H.E Boyer and T.L. Gall, Metals Handbook (Metak Park, OH:ASM International), 44-48 (1985).
99.M.J. Cieslak, J.H. Perpezko, S. Kang, and M.E. Glicksman, eds., The metal Science of Joint (Warrendale, PA: MS), 171-176 (1992).
100.S.K. Kang, J. Horkans, P.C. Andricacos, and R.A. Carruthers, Proc. 49th Electronic Compounds Technology Conf. (Piscataway, NJ:IEEE,) 283-288 (1999).
101.Metal Handbook, eighth edition, Vol. 1: Properties and Selection of Metals (Materials Park, OH: ASM International, 1961), pp. 48–49.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top