跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/23 18:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯承浩
研究生(外文):Hou, Chen-Hao
論文名稱:原子層化學氣相沉積之高介電閘極絕緣層於矽及銻化銦基板之研究
論文名稱(外文):Atomic Layer Deposition of High-k Gate Dielectrics on Silicon and Indium Antimonide
指導教授:吳泰伯
指導教授(外文):Wu, Tai-Bor
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:152
中文關鍵詞:原子層化學氣相沉積三五族化合物半導體高介電常數閘極氧化層
外文關鍵詞:ALDIII-V compound semiconductorhigh-k dielectricsCMOSHKMG
相關次數:
  • 被引用被引用:0
  • 點閱點閱:403
  • 評分評分:
  • 下載下載:82
  • 收藏至我的研究室書目清單書目收藏:1
In this thesis, atomic layer deposition (ALD) will be used to deposit high dielectric constant film on Si and InSb (III-V) semiconductor substrates. Firstly, the researches are focused on the preparation of ultrathin hydroxyl (-OD) and nitric (-NH) groups on H-terminated Si by using high-reactive D2O and N2/H2 free radicals. These ALD starting layers will prevent the island nucleation at the initial cycles. The results show that in-situ radical surface pre-treatments could descend the leakage current of the metal-oxide-semiconductor (MOS) capacitor and scale down the equivalent oxide thickness (EOT) to 0.72nm. The detailed experiments and results will be discussed in Chapter 3.
Furthermore, in order to improve the thermal stability of the high-κ films grown by ALD, in Chapter 4, we propose an innovative method -“inter-layer D2O radical anneal” in which the high reactive D2O radicals are pulsed in between every two ALD cycles. The D2O radical anneal will effectively link the deposited HfO2 molecules in lateral and eliminate the un-reacted precursors, resulting both densification and purification effects on the grown films. The result shows a significant improvement that the EOT could even maintain stable at 1.0 nm after passing through 900°C PDA.
Finally, in Chapter 5, we try to passivate InSb compound semiconductor by using ALD grown Al2O3 film. An particular interfacial self-cleaning phenomenon is found in the ALD of Al2O3 on InSb substrate, using Al(CH3)3 (TMA) and H2O as the precursors. The native oxides of InSb are greatly removed from the interface through ligand exchange (substitution) reactions with the TMA precursor. Besides, intentional 100 cycles of TMA/Ar half ALD-cycle pulses and CP4A chemical clean are also applied to InSb surface before Al2O3 deposition. An Al2O3/InSb structure without residual native oxides is achieved by these surface pretreatments and in-situ self clean effect. With the removal of the native oxides from the interface, a clear transition from accumulation to depletion region and insignificant frequency dispersion are found in the capacitance-voltage relations, which reveals the releasing of the Fermi-level pinning.
本篇論文將利用原子層化學氣相沉積的方法分別在矽基板及三五族化合物半導體基板上做高介電氧化物的沉積。首先,在矽基板上,研究將聚焦於利用水氣及氮氣/氫氣自由基,在氫鈍化保護的矽基板上分別製作一層超薄氫氧根層及氮氫根層以作為原子層化學氣相沉積之初始反應層來防止島狀成核的發生。實驗結果顯示,經由此表面預處理後,可使金屬-氧化物-半導體電容之漏電流大幅下降,等效氧化物厚度也可有效微縮至0.72奈米,此部分之結果將在第三章中討論。
為了進一步提升以原子層化學氣相沉積製作之薄膜的熱穩定性,在第四章中,我們在每兩個循環的原子層化學氣相沉積後進行重水自由基之退火處理。此自由基退火將可以有效的對氧化鉿薄膜進行橫向的連結,並且消除未反應完全的前趨物官能基,此方法可同時降低薄膜中的雜質含量以及提高薄膜之緻密性。經過自由基退火處理的氧化鉿薄膜即使經過九百度的高溫後薄膜沉積退火處理後其等效氧化物厚度仍可維持在1奈米,沒有上升。此結果和以一般原子層化學氣相沉積方式製作之薄膜有著顯著的改善。
最後,在第五章的研究當中,我們嘗試利用原子層化學氣相沉積的方式在銻化銦化合物半導體上鍍製氧化鋁作為表面披覆層。在研究中發現,三甲基鋁金屬前趨物將會與表面之原身氧化物進行官能機交換(替換)的反應並在薄膜沉積的過程中間接移除此原身氧化物,達到自我清潔的效果。除此之外,在氧化鋁薄膜沉積之前,我們亦利用了一百次的三甲基鋁/氬氣循環和CP4A化學溶液來預先清潔銻化銦基板的表面。經由此些表面處理技術以及原子層化學氣相沉積過程中特殊的原身氧化物自我清潔效應,我們可以得到一無原身氧化物殘留的氧化鋁/銻化銦結構。當原身氧化物被清除後,電容-電壓曲線呈現一個理想的累積區至反轉區的轉變以及微小的頻率分散,這代表費米能偕拴鎖現象已經解除。
ABSTRACT I
摘要 III
CONTENTS V
LIST OF TABLES IX
LIST OF FIGURES XI
CHAPTER 1 INTRODUCTION OF HIGH-Κ GATE DIELECTRICS AND ATOMIC LAYER DEPOSITION (ALD) TECHNOLOGY - 1 -
1-1 PRELUDE - 2 -
1-2 HIGH-Κ MATERIALS FOR GATE DIELECTRIC APPLICATIONS - 6 -
1-3 ATOMIC LAYER DEPOSITION (ALD) - 11 -
1-3-1 Introduction - 11 -
1-3-2 ALD process - 4 -
1-3-3 ALD technology developed in our lab - 5 -
1-4 OUTLINE OF THIS THESIS - 9 -
1-5 REFERENCE - 10 -
CHAPTER 2 EXPERIMENT - 12 -
2-1 EXPERIMENT FLOW AND METHODS - 13 -
2-1-1 Silicon wafer pre-gate clean - 14 -
2-1-2 In-situ radical surface treatment - 15 -
2-1-3 ALD HfO2 layer growth - 15 -
2-1-3-1 Conventional ALD process - 16 -
2-1-3-2 ALD process with inter-layer D2O radical anneal - 17 -
2-1-4 Post Deposition Anneal (PDA) - 18 -
2-1-5 Structural and Compositional Analysis - 19 -
2-1-5-1 X-ray Photoelectron Spectroscopy (XPS) - 19 -
2-1-5-2 Angle Resolved X-ray Photoelectron Spectroscopy (ARXPS) - 20 -
2-1-5-3 High Resolution Transmission Electron Microscopy (HRTEM) - 20 -
2-1-5-4 Grazing Incidence X-ray Diffraction (GIXRD) - 21 -
2-1-5-5 In-Plane X-ray Diffraction (IPXRD) [2.7] - 21 -
2-1-6 MOS capacitor process flow - 22 -
2-1-7 Electric property measurements - 25 -
2-2 REFERENCE - 27 -
CHAPTER 3 CHARACTERISTICS OF ATOMIC LAYER DEPOSITED ULTRATHIN HFO2 FILMS GROWN ON D2O AND N2 / H2 RADICALS PRE-TREATED SI SUBSTRATES - 29 -
3-1 INTRODUCTION - 30 -
3-2 HARDWARE DESIGN - 36 -
3-3 D2O RADICAL SURFACE PRE-TREATMENT - 37 -
3-3-1 Basic plasma parameters tuning - 37 -
3-3-1-1 Effects of plasma power - 38 -
3-3-1-2 Effects of D2O radical expose time - 40 -
3-3-1-3 Effects of D2O concentration in the radical generator - 43 -
3-4 ULTRATHIN HYDROXYL GROUPS PREPARED BY HEAVY-WATER (D2O) RADICAL SURFACE PRE-TREATMENT - 45 -
3-5 N2/H2 RADICAL SURFACE TREATMENT - 59 -
3-5-1 Introduction - 59 -
3-5-2 Effects of N2/H2 radical exposure time on the electrical properties of the MOS capacitors - 60 -
3-5-3 Characterization of the HfO2 grown on N2/H2 radical pre-treated Si - 63 -
3-5-4 Effects of the high temperature PDA on the thin HfO2 grown on D2O and N2/H2 radical pre-treated Si - 72 -
3-6 REFERENCE - 80 -
CHAPTER 4 THERMAL STABILITY IMPROVEMENT VIA IN-SITU INTER-LAYER D2O RADICAL ANNEAL IN ATOMIC LAYER DEPOSITION OF HFO2 GATE OXIDE - 84 -
4-1 INTRODUCTION - 85 -
4-2 INTER-LAYER D2O RADICAL ANNEAL - 88 -
4-3 OPTIMIZATION OF THE INTER-LAYER D2O RADICAL ANNEAL INTERVAL - 91 -
4-4 STRUCTURAL AND ELECTRICAL PROPERTIES INVESTIGATION - 95 -
4-5 REFERENCE - 106 -
CHAPTER 5 SURFACE PASSIVATION OF INSB COMPOUND SEMICONDUCTOR BY AL2O3 VIA ATOMIC LAYER DEPOSITION - 108 -
5-1 DEVELOPMENT OF METAL/OXIDE/III-V MOS STRUCTURES - 109 -
5-2 MOTIVATION - 116 -
5-3 EXPERIMENT PROCEDURE - 121 -
5-4 RESULT AND DISCUSSION - 124 -
5-4-1 Surface morphology and composition after various surface pre-treatments - 124 -
5-4-2 Passivation of InSb surface by Al2O3 via ALD - 135 -
5-5 REFERENCE - 144 -
CHAPTER 6 CONCLUSION - 150 -
1.1 D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, and G. Timp, Nature 399, 758-762 (1999)
1.2 H. S. Momose, M, Ono, T. Yoshitomi, T. Oghmo, S. Nakamma, M. Saito, and H. Iwai, IEDM Tech. Dig., 593-618 (1994)
1.3 Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S. –H. Lo, G. A. Sai-Halong, R. C. Viswanathan, H. –J C. Wann, S. J. Wind, and H. –S. Wong, IEDM Tech. Dig., 593-612 (1994)
1.4 K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C.-H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Heussner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, K. Zawadzki, IEDM Tech. Dig., 247-250 (2007).
1.5 Front end process in ITRS 2005, (http://www.itrs.net/, 2005).
1.6 R. Chou, INFOS 2005 presentation.
1.7 J. Kwo and M. Hong, J. Crystal Growth 311, 1944 (2009)
1.8 P. D. Ye, J. Vac. Technol. A 26, 697 (2008).
1.9 G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys., 89, 5243 (2001)
1.10 G. D. Wilk and R. M. Wallace, in H. R Huff (Ed.), and D. C. Gilmer (Ed.), High Dielectric Constant Materials-VLSI MOSFET Applications, Springer (2005) p. 261
1.11 邱彥凱,清華大學博士論文(2007)
1.12 張哲豪,清華大學博士論文 (2006)
1.13 D. M. Hausmann, E. Kim, J. Becker, and R. G. Gordon, Chem. Mater. 14, 4350 (2002).
1.14 J. Robertson, P.W. Peacock, in: M. Houssa (Ed.), High-κ Gate Dielectrics, IOP, London, 2003, p. 372.
1.15 K. Tomida, K. Kita, and A. Toriumi, Appl. Phys. Lett. 89, 142902 (2006).
1.16 Y. Watanabe, H. Ota, S. Migit, Y. Kamimuta, K. Iwamoto, M. Takahashi, A. Ogawa, H. Ito, T. Nabatame and A. Toriumi, ECS. Trans. 11, 35 (2007)
1.17 Available on line: http://www.cambridgenanotech.com/index.php
1.18 R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, IEEE Electron Device Lett. 25, 408 (2004).
1.19 Available online: http://www.picosun.com
1.20 Available on line: http://www.cambridgenanotech.com/index.php

2.1 Available on line: http://www.ulvac.com/thermal/mila.asp
2.2 S. Oswald, M. Zier, R. Reiche and K. Wetzig, Surf. Interface Anal., 38, 590 (2006).
2.3 S. Oswald, R. Reiche, M. Zier, S. Baunack, K. Wetzig, Appl. Surf. Sci., 252, 3 (2005).
2.4 M. Zier, S. Oswald , R. Reiche, and K. Wetzig, Microchim Acta, 156, 99 (2007).
2.5 M. Kozłowska, R. Reiche, S. Oswald, H. Vinzelberg, R. Hubner and K. Wetzig, Surf. Interface Anal., 36, 1600 (2004).
2.6 See on line: http://www.ma-tek.com/
2.7 See on line: http://www.rigaku.com/apps/inplane.html
2.8 See on line: http://www.rigaku.com/xrd/ttrax.html
2.9 J. Hauser, CVC © 1996 NCSU software, Department Elect. Comput. Eng. North Carolina State University, Raleigh, NC.
2.10 F. Stren and W. E. Howard, Phys. Rev., 163, 816 (1967)
2.11 A. Haque and M. Z. Kauser, IEEE Trans. Electron Devices, 49, 1580 (2002).
2.12 S. Mudanai, L. F. Register, A. F. Tasch, and S. K. Banerjee, IEEE Electron Diveces, 22, 145 (2001).
2.13 F. Li, S. Mudanai, L. F. Register, and S. K. Banerjee, IEEE Electron Diveces, 52, 1148 (2005).

3.1 Timp G et al 1999 Tech. Dig. Int. Electron Device Meet. (Piscataway: IEEE) p55
3.2 Chau R, Kavalieros J, Roberds B, Schenker R, Lionberger D, Barlage D, Doyle B, Arghavani R, Murthy A and Dewey G 2000 Tech. Dig. Int. Electron Device Meet. (Piscataway: IEEE) p45
3.3 Depas M, Vermeire B, Mertens P W, Van Meirhaeghe R L and Heyns M M 1995 Solid-State Electron. 38 1465
3.4 Lo S H, Buchanan D A, Taur Y and Wang W, IEEE Electron Dev. Lett. 18 209 (1997)
3.5 Z. M. Rittersma, J. J. G. P. Loo, Y. V. Ponomarev, M. A. Verheijen, M. Kaiser, F. Roozeboom, S. Van Elshocht, and M. Caymax, Journal of the Electrochemical Society 151, G870 (2004).
3.6 T. Suntola and J. Antson, U.S. Patent. No. 4,058,430 (1977)
3.7 T. Suntola and J. Antson, Finland Patent No. 52,359 (1977)
3.8 T. Suntola, Mater. Sci. Rep., 4, 261 (1989)
3.9 Riikka L. Puurunen, J. Appl. Phys. 97, 121301 (2005)
3.10 The international Technology Roadmap for semiconductors, 2007 edition
3.11 H. Bender, T. Conard, H. Nohira, J. Petry, O. Richard, C. Zhao, B. Brijs, W. Besling, C. Detavernier, W. Vandervorst, M. Caymax, S. De Gendt, J. Chen, J. Kluth, W. Tsai, and J. W. H. Maes, Proceedings of the IWGI, Tokyo, 2001, p. 86.
3.12 M. L. Green, M.-Y. Ho, B. Busch, G. D. Wilk, and T. Sorsch, T. Conard, B. Brijs, and W. Vandervorst, D. Muller, M. Bude, and J. Grazul, J. Appl. Phys. 92, 7168 (2005)
3.13 S. Ramanathan, G. D. Wilk, D. A. Muller, C. M. Park, and P. C. McIntyre, Appl. Phys. Lett. 79, 2621 (2001).
3.14 S. Ramanathan, P. C. McIntyre, J. Luning, P. Pianetta, and D. A. Muller, Philos. Mag. Lett. 82, 519 (2002).
3.15 F. Tardif, A. Chabli, A. Danel, N. Rochat, and M. Veillerot, J. Electrochem. Soc., 150, G333 (2003).
3.16 M. Specht, M. Stadele, F. Hofmann, in: Proceedings of the 32th European Solid-State Device Research Conference, Firenze, Italy, 2002, pp. 599-602
3.17 L. G. Gosset, J. F. Damlencourt, O. Renault, D. Rouchon, P. Holliger, A. Ermolieff, I. Trimaille, J. J. Ganem, F. Martin, and M. N. Semeria, J. Non-cryst. Solids, 303, 17 (2002)
3.18 Y. Chang, F. Ducroquet, E. Gautier, O. Renault, J. Legrand, J.F. Damlencourt, and F. Martin, Microelectronic Engineering, 72, 326 (2004)
3.19 H. Kang, S. Kim; J. Choi; J.Kim; H. Jeon; C. Bae, Electrochemical and Solid-State Letters, 9, G211, (2006)
3.20 J.R. Hauser, K. Ahmed, Characterization and Metrology for ULSI Technology, p. 235, (1998)
3.21 M.-T. Ho, Y. Wang, R. T. Brewer, L. S. Wielunski, Y. J. Chabal, N. Moumen, and M. Boleslawski, Appl. Phys. Lett. 87, 133103 (2005).
3.22 O. Renault, D. Samour, J.-F. Damlencourt, D. Blin, F. Martin, S. Marthon, N. T. Barrett, P. Besson, Appl. Phys. Lett. 81, 3627 (2002).
3.23 J.-F. Damlencourt, O. Renault, D. Samour, A.-M. Papon, C. Leroux, X. Garros, F. Martin, S. Marthon, and M.-N. Séméria, Solid-State Electron. 47, 1613 (2003).
3.24 E. H. Nicollian and A. Goetzberger, Bell Syst. Tech. J. 46, 1055-1133, July/Aug. (1967)
3.25 E. H. Nicollian and J. R. Brews: MOS Physics and Technology (Wiley, New York, 1981)
3.26 T. P. Ma and R. C. Barker, Solid-State Electron. 17, 913, (1974)
3.27 S. Kar and W. E. Dahlke, Solid-State Electron. 15, 221, (1972)
3.28 Eric M. Vogel, W. Kirklen Henson, Curt A. Richter, and John S. Suehle, IEEE Trans. Electron Devices, 47, 3, 601 (2000)
3.29 K. T. Queeney, H. Fukidome, E. E. Chaban, and Y. J. Chabal, J. Phys.Chem. B 105, 3903 (2001).
3.30 C.H. Choi, T.S. Jeon, R. Clark, D.L. Kwong, Electron Device Letters, 24, 215 (2003)
3.31 C.H. Choi, S.J. Rhee, T.S. Jeon, N. Lu, J.H. Sim, R. Clark, M. Niwa, D.L. Kwong, International Electron Devices Meeting, 857 (2002)
3.32 H.-J. Li, T. Pompl, C. Young, T. Rhoad, J. Saulters, J. Peterson, M. Gardner, G.A. Brown, G. Bersuker, P.M. Zeitzoff, J. Price, P.Y. Hung, A. Diebold, H.R. Huff, 62nd Device Research Conference, 1, 15 (2004)
3.33 Koike M., Ino T., Kamimuta Y., Koyama M., Kamata Y., Suzuki M., Mitani Y., Nishiyama A., Tsunashima Y., International Electron Devices Meeting, 4.7.1 (2003)
3.34 M. Koyama, M., Kaneko, A.; Ino, T., Koike, M., Kamata, Y., Iijima, R., Kamimuta, Y., Takashima, A., Suzuki, M., Hongo, C., Inumiya, S., Takayanagi, M., Nishiyama, A. International Electron Devices Meeting. Technical Digest 849, (2002)
3.35 J. R. Shallenberger, D. A. Cole, and S. W. Novak, J. Vac. Sci. Technol. A 17, 1086 (1999).
3.36 P. Cova, S. Poulin, O. Grenier, and R. A. Masut, J. Appl. Phys. 97, 73518 (2005).
3.37 H. Jin, S. K. Oh and H. J. Kang, Surf. Interface Anal., 38, 1564 (2006)
3.38 Y. Chung, JC. Lee, HJ. Shin, Appl. Phys. Lett. 86, 022901 (2005)

4.1 B. H. Lee, L. Kang, R. Nieh, W. J. Qi, and J. C. Lee, Appl. Phys. Lett. 76, 1926 (2000).
4.2 H. Kim, P. C. Mclntyre, and K. C. Saraswat, Appl. Phys. Lett. 82, 106 (2003).
4.3 M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. J. Lee, and K. Fujihara, Appl. Phys. Lett. 81, 472 (2002).
4.4 J. Park, M. Cho, S. K. Kim, T. J. Park, S. W. Lee, S. H. Hong, and C. S. Hwang, Appl. Phys. Lett. 86, 112907 (2005).
4.5 K. J. Hubbard and D. G. Schlom, J. Matter. Res. 11, 2757 (1996).
4.6 A. Toriumi, T. Nabatame, and T. Horikawa, Mat. Res. Soc. Symp. Proc., 786, 135 (2003).
4.7 J. Aarik, A. Aidla, H. Mandar, V. Sammelselg, and T. Uustare, J. Cryst. Growth 220, 105 (2000).
4.8 J. Aarik, A. Aidla, H. Mandar, T. Uustare, K. Kukli, and M. Schuisky, Appl. Surf. Sci. 173, 15 (2001).
4.9 G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 87, 484 (2000).
4.10 K. Torii, T. Kawahara, K. Shiraishi, Electron. Device Letts., 26, 722-4, (2005)
4.11 C. H. Hou and T. B. Wu, Unpublished results
4.12 M. M. Frank, Y. J. Chabal, M. L. Green, A. Delabie, B. Brijs, G. D. Wilk, Mun-Yee Ho, E. B. O. da Rosa, I. J. R. Baumvol, and F. C. Stedile, Appl. Phys. Lett. 83, 740 (2003).
4.13 K. Tomida, K. Kita, and A. Toriumi, Appl. Phys. Lett. 89, 142902 (2006).
4.14 Y. Watanabe, H. Ota, S. Migit, Y. Kamimuta, K. Iwamoto, M. Takahashi, A. Ogawa, H. Ito, T. Nabatame and A. Toriumi, ECS. Trans. 11, 35 (2007)
4.15 J. R. Hauser, K. Ahmed, Characterization and Metrology for ULSI Technology, p.235 (1998)

5.1 Moore G E 1965 Electronics 38 114-117
5.2 See Moore’s law at http://www.intel.com/technology/mooreslaw/index.htm
5.3 R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, IEEE Electron Device Letters, 25, 408 (2004)
5.4 S.E. Thompson, M. Armstrong, C. Auth, S. Cea, R. Chau, G. Glass, T. Hoffman, J. Klaus, M. Zhiyong, B. Mcintyre, A. Murthy, B. Obradovic, L. Shifren, S. Sivakumar, S. Tyagi, T. Ghani, K. Mistry, M. Bohr, and Y. El-Mansy, IEEE Electron Device Letters, 25, 191 (2004)
5.5 Ashley, A. B. Dean, C. T. Elliott, R. Jefferies, F. Khaleque, and T. J. Phillips, IEDM Technical Digest, 751, (1997)
5.6 R. Chou, INFOS 2005 presentation
5.7 M. Gutowski, J. E. Jaffe, C.-L. Liu, and M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, Appl. Phys. Lett. 80, 1897 (2002).
5.8 Y. Xuan, H. C. Lin, P. D. Ye, and G. D. Wilk, Appl. Phys. Lett. 88, 263518 (2006).
5.9 M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, Appl. Phys. Lett. 87, 252104 (2005)
5.10 M. Passlack, M. Hong, and J. P. Mannaerts, Appl. Phys. Lett. 68, 1099 (1996).
5.11 P. D. Ye, G. D. Wilk, J. Kwo, B. Yang, H.-J. L. Gossmann, M. Frei, S. N. G. Chu, J. P. Mannaerts, M. Sergent, M. Hong, K. K. Ng, and J. Bude, IEEE Electron Device Lett. 24, 209 (2003)
5.12 M. L. Huang, Y. C. Chang, C. H. Chang, T. D. Lin, J. Kwo, T. B. Wu and M. Hong, Appl. Phys. Lett. 89, 012903 (2006).
5.13 C. J. Sandroff, M. S. Hegde, L. A. Farrow, C. C. Chang, and J. P. Harbison, Appl. Phys. Lett. 54, 362 (1989).
5.14 T. Tiedje, K. M. Colbow, D. Rogers, Z. Fu, and W. Eberhardt, J. Vac. Sci. Technol. B 7, 837 (1989).
5.15 C. J. Sandroff, M. S. Hegde, and C. C. Chang, J. Vac. Sci. Technol. B 7, 841 (1989).
5.16 A. Callegari, P. D. Hoh, D. A. Buchanan, and D. Lacey, Appl. Phys. Lett. 54, 332 (1989).
5.17 R. Fischer, T. Henderson, J. Klem, W. T. Masselink, W. Kopp, H. Morkoç, and C. W. Litton, Electron. Lett. 20, 945 (1984).
5.18 G. M. Metze, H. K. Choi, and B.-Y. Tsaur, Appl. Phys. Lett. 45, 1107 (1984).
5.19 Parvez N. Uppal and Herbert Kroemer, J. Appl. Phys. 58, 2195 (1985).
5.20 T. Nonaka, M. Akiyama, Y. Kawarada, and K. Kaminski, Jpn. J. Appl. Phys. 23, L919 (1984).
5.21 R. Fischer, N. Chand, W. Kopp, H. Morkoç, L. P. Erickson, and R. Youngman, Appl. Phys. Lett. 47, 397 (1985).
5.22 R. Fischer, N. Chand, W. Kopp, C. K. Peng, H. Morkoç, K. R. Gleason, and D. Scheitlin, IEEE Trans. Electron Devices ED-33, 206 (1986).
5.23 M. W. Hong, J. R. Kwo, P. C. Tsai, Y. C. Chang, M. L. Huang, C. P. Chen, T. D. Lin, Jpn. J. Appl. Phys.46 (Part 1 Issue 5B), 3167 (2007).
5.24 A. Kapila, V. Malhotra, Conference on Optoelectronic and Microelectronic Materials and Devices. Proceedings, p 275-82, (1996)
5.25 W. Tsai, L.-Å Ragnarsson, L. Pantisano, P.J. Chen, B. Onsia, T. Schram, E. Cartier, A. Kerber, E. Young, M. Caymax, S. De Gendt, and M. Heyns, Dig.-Int. Electron Devices Meet. 2003, 311 (2003).
5.26 H. Hasegawa, M. Akazawa, H. Ishii, and K.-I. Matsuzaki, J. Vac. Sci. Technol. B 7, 870 (1989).
5.27 H. S. Kim, I. Ok, M. Zhang, C. Choi, T. Lee, F. Zhu, G. Thareja, and J. C. Lee, Appl. Phys. Lett. 88, 252906 (2006).
5.28 Z. H. Lu, D. Landheer, J.-M. Baribeau, L. J. Huang, and W. W. Lau, Appl. Phys. Lett. 64, 1702 (1994).
5.29 S. Koveshnikov, W. Tsai, I. Ok and J. C. Lee, V. Torkanov, M. Yakimov, and S. Oktyabrsky, Appl. Phys. Lett. 88, 022106 (2006).
5.30 H.-S. Kim, I. Ok, M. Zhang, T. Lee, F. Zhu, L. Yu, and J. C. Lee, Appl. Phys. Lett. 89, 222903 (2006).
5.31 I. Ok, H.-S. Kim, M. Zhang, C.-Y. Kang, S. J. Rhee, C. Choi, S. A. Krishnan, T. Lee, F. Zhu, G. Thareja, and J. C. Lee, IEEE Electron Device Lett. 27, 145 (2006).
5.32 M. Akazawa, H. Ishii, H. Hasegawa, Jap. J. Appl. Phys. B 30, 3744 (1991).
5.33 H. Hasegawa and H. Ohno, J. Vac. Sci. Technol. B 4, 1130 (1986).
5.34 T. Ashley, A. R. Barnes, L. Buckle, S. Datta, A. B. Dean, M. T. Emeny, M. Fearn, D. G. Hayes, K. P. Hilton, and R. Jefferies, 2004 7th International Conference on Solid-State and Integrated Circuits Technology Proceedings, 3, 2253 (2005)
5.35 N. Yokoi, H. Andoh, and M. Takai, Appl. Phys. Lett., 64, 2578 (1994).
5.36 M. G. Kang, H. H. Park, and H. Kim, Appl. Phys. Lett., 80, 2499 (2002).
5.37 C. L. Chen, L. J. Mahoney, M. J. Manfra, F. W. Smith, D. H. Temme, and A. R. Calawa, IEEE Electron Device Lett., 13, 335 (1992).
5.38 M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, Science, 283, 1897 (1999).
5.39 H. Simchia, Sh. Bahreani, and M. H. Saani, Eur. Phys. J.: Appl. Phys., 33, 1 (2006).
5.40 P. John, T. Miller, and T. C. Chiang, Phys. Rev. B, 39, 1730 (1989).
5.41 M. O. Schweitzer, F. M. Leibsle, T. S. Jones, C. F. McConville, and N. V. Richardson, Semicond. Sci. Technol., 8, S342 (1993).
5.42 R. Tessler, R. Akhvlediani, R. Edrei, O. Klin, S. Greenberg, E. Weiss, C. Saguy, and A. Hoffman, Appl. Phys. Lett., 88, 031918 (2006).
5.43 A. Rastogi and K. V. Reddy, Thin Solid Films, 270, 616 (1995)
5.44 C. H. Chang, Y. K. Chiou, Y. C. Chang, K. Y. Lee, T.-D. Lin, T. B. Wu, J. Kuo, and M. Hong, Appl. Phys. Lett., 89, 242911 (2006).
5.45 Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, Appl. Phys. Lett., 92, 072901 (2008).
5.46 C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, et al.Appl. Phys. Lett., 92, 071901 (2008).
5.47 H. Simchi, Sh. Bahreani, and M. H. Saani, Eur. Phys. J. Appl. Phys., 33, 1 (2006).
5.48 D. G. Hendershot, J. C. Pazik, and A. D. Berry, Chem. Mater., 4, 833 (1992).
5.49 Y. Bu, M. C. Lin, A. D. Berry, and D. G. Hendershot, J. Vac. Sci. Technol. A, 13, 230 (1995).
5.50 A. Etchells and C. W. Fischer, J. Appl. Phys., 47, 4605 (1976).
5.51 C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, J. Kim, et al.Appl. Phys. Lett., 91, 163512 (2007).
5.52 J. C. Kim, IEEE Trans. Parts, Hybrids, Packag., 10, 200 (1974).
5.53 R. Y. Hung and E. T. Yon, J. Appl. Phys., 41, 2185 (1970).
5.54 H. D. Barber and E. L. Heasell, J. Appl. Phys., 36, 176 (1965).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 原子層化學氣相沉積之氧化鉿材料於電阻式記憶體之改善與應用
2. 利用氮氫和水氣電漿處理改善原子層化學氣相沉積HfO2高介電閘極氧化薄膜之熱穩定性
3. 應用在金氧半電晶體之原子層沉積氧化鋁與砷化銦鎵、砷化銦介面之研究
4. 於鍺基板上以原子層化學氣相沉積鍍製氧化鑭-氧化鋁-氧化鈦多疊層閘極介電層之研究
5. 矽薄膜電晶體元件可撓特性之研究
6. 原子層化學氣相沉積之高介電薄膜於金屬-氧化物-半導體與金屬-絕緣層-金屬結構下之應用
7. 下電極材料對原子層化學氣相沉積氧化鋁高介電薄膜應用在奈米尺度世代DRAM影響之研究
8. 使用原子層沉積系統沉積氧化鎵作為閘極材料來提升氮化鎵高速元件特性之研製
9. 以原子層沉積法製備奈米鉑觸媒於新穎多孔性載體應用於高效能質子交換膜燃料電池及其加速老化之研究
10. 於鍺基板上以原子層化學氣相沉積鍍製高介電閘極絕緣層於下世代金屬-氧化物-半導體結構下之應用
11. 原子層沉積法成長單晶氧化鋅薄膜之光學與晶體結構特性研究
12. 以原子層沈積法製備氧化鋁阻氣層之研究
13. 以原子層沉積及分子束磊晶成長之高介電常數氧化物為閘極介電層之高效能氮化鎵金氧半場效電晶體之製作和研究
14. 高效能自對準反轉通道砷化銦鎵金氧半場效電晶體
15. 利用原子層沉積與陽極氧化鋁膜製備一維二氧化鈦奈米結構陣列及其光學特性研究