跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/22 22:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張伯宇
研究生(外文):Chang, Po-Yu
論文名稱:UWB直接降頻接收機前端電路設計
論文名稱(外文):Front-End Design of UWB Direct-Conversion Receiver
指導教授:徐碩鴻陳新陳新引用關係
指導教授(外文):Hsu, Shuo-HungChen, Hsin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:66
中文關鍵詞:超寬頻低雜訊放大器被動式混波器直接降頻
外文關鍵詞:ultra-wideband (UWB)low noise amplifier (LNA)passive mixerdirect-conversion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的是設計並實現所佔面積極小且具備良好特性的超寬頻(UWB)接收器前端電路以降低晶片成本。我們已完成小面積UWB LNA、寬頻被動式混波器及UWB接收機前端電路的設計與晶片實作。
LNA以TSMC 0.13-μm CMOS設計製作,採用電阻回授式架構並使用閘極電感提升頻寬。閘極電感是全電路唯一使用的電感,僅需0.4 nH就能有效提升電路頻寬並壓低高頻的雜訊。LNA核心電路所佔面積僅0.031 mm2。經量測,LNA頻寬涵蓋UWB 3.1-10.6GHz,在此頻段中增益為11-12.4 dB,NF為2.7-3.7 dB,S11 < -7.3 dB,在頻率為6GHz時IIP3為-3.8 dBm,電路的操作電壓為1.8 V,功率消耗為14.4 mW。
寬頻被動式混波器的實作採用TSMC 0.18-μm CMOS,電路包含一個前端放大器、混波開關(switch)及一個一階的主動低通濾波器。本電路核心面積為0.15 mm2。量測時LO功率選用5 Bm,量測結果顯示最大轉換增益為8.4 dB、頻寬為3-7 GHz,IF頻寬為210 MHz,在4 GHz時IIP3為-0.4 dBm,且不同端間隔絕良好,電路於1.8 V操作電壓下功率消耗為10.7 mW。
最後,UWB直接降頻接收機前端電路採用TSMC 0.13-μm CMOS設計製作,電路包含一個寬頻的差動式LNA及一個寬頻被動式混波器。我們在LNA輸出負載串上一個可用單一線圈提供差動電感負載的center-tapped電感來提升電路增益、NF及輸入匹配的頻寬,另外被動式混波器的前端放大器採用capacitive-peaking的技巧以提昇電路操作頻寬,整個電路就只有使用一個center-tap電感,主要電路的面積僅為0.22 mm2。本電路模擬結果顯示在UWB 3.1-10.6GHz頻段中,增益為21-22 dB,DSB NF為3.7-4.2 dB,6.6 GHz時IIP3為-15.3 dBm,在1.8 V操作電壓下功率消耗為32.8 mW。
The target of this research is to design and implement an ultra-wideband (UWB) direct-conversion receiver front-end occupied a small area with good performance to cost down. We have designed and implemented an UWB low noise amplifier (LNA), a wideband passive mixer and a UWB receiver front-end with compact sizes.
The LNA was implemented in TSMC 0.13 μm CMOS technology and based on the resistive-feedback architecture with bandwidth extension by gate inductive- peaking. The gate inductor with only 0.4 nH is the only coil used in this circuit which extends the bandwidth and lowers the noise at high frequencies of the LNA effectively. The core area of the LNA is 0.031 mm2. The measured bandwidth of the LNA covers UWB 3.1-10.6GHz and within this band the gain is 11-12.4 dB, the NF is 2.7-3.7 dB and S11 < -7.3 dB. The IIP3 measured at 6 GHz is -3.8 dBm. This LNA consumes 14.4 mW from a 1.8 V supply.
The wideband passive mixer implemented in TSMC 0.18 μm CMOS technology is composed of a pre-amplifier, mixing switches, and a 1st order active low-pass filter. The core area of this circuit is 0.15 mm2. Measurement results show that the mixer has a 8.4 dB maximum conversion gain, a 3-7 GHz bandwidth, a 13.8-15.8 dB DSB NF within the bandwidth, a 210MHz IF bandwidth, a -0.4 dB IIP3 at 4 GHz, a good port-to-port isolation, and consumes 10.4 mW from a 1.8 V supply.
Finally, the UWB direct-conversion receiver front-end composed of a wideband differential LNA and a wideband passive mixer was implemented in TSMC 0.13 μm CMOS technology. We add a center-tapped inductor which provides differential inductive load with only one coil to extend the bandwidth of the gain, NF and input matching. On the other hand, the capacitive-peaking technique is used in the pre- amplifier of the passive mixer to extend the bandwidth of the overall front-end. Only one coil is used in the whole circuit and the core area of the circuit is 0.22 mm2. The circuit simulated with 21-22 dB conversion gain, 3.7-4.2 dB DSB NF within UWB 3.1-10.6GHz and -15.3 dBm IIP3 at 6.6 GHz. Operating at a 1.8 V supply, this circuit consumes 32.8 mW.
Abstract i
致謝 iv
Contents v
List of Figures viii
List of Tables xi

Chapter 1 Introduction 1
1.1 Background and Recent Trends 1
1.2 Motivation and Proposed Concepts 2
1.3 Thesis Organization 3

Chapter 2 Fundamentals of RF Receiver Design 5
2.1 Overview of RF Transceivers 5
2.2 Basic Concepts of RF Design 6
2.2.1 Nonlinearity 6
2.2.2 Noise 12
2.2.3 Sensitivity and Dynamic Range 18
2.3 Receiver Architectures 18
2.3.1 Heterodyne Receivers 18
2.3.2 Direct-Conversion Receivers 20
2.3.3 Image-Reject Receivers 21
2.3.4 Digital IF Receivers 23
2.4 Summary 24

Chapter 3 Compact UWB LNA Design 25
3.1 Purpose of the Design 25
3.2 Resistive-Feedback LNAs 25
3.3 Bandwidth Extension of Resistive-Feedback LNA 27
3.3.1 Basic Concepts of Gate Inductive-Peaking 28
3.3.2 Resistive-Feedback LNA with Gate Inductive-Peaking 29
3.4 Proposed LNA Design 30
3.4.1 Proposed Compact UWB LNA 30
3.4.2 Design of the Gate Inductor 32
3.5 Experimental Results 34
3.6 Summary 37

Chapter 4 Wideband Passive Mixer Design 39
4.1 Purpose of the Design 39
4.2 Circuit Architecture and Design 39
4.2.1 Passive Mixer Architecture 40
4.2.2 Circuit Design 41
4.3 Experimental Results 44
4.4 Summary 49

Chapter 5 Low Cost UWB Direct-Conversion Receiver Front-End Design 51
5.1 Purpose of the Design 51
5.2 Circuit Architecture and Design 51
5.2.1 Receiver Front-End Architecture 52
5.2.2 Wideband Differential LNA Design 52
5.2.3 Wideband Passive Mixer Design 54
5.3 Experimental Results 56
5.3.1 Simulation Results 57
5.3.2 Measurement Results 59
5.4 Summary 60

Chapter 6 Conclusion and Future Works 61
6.1 Conclusion of this Thesis 61
6.2 Future Works of this Research 61

References 63
[1] A. Batra et al., “Multi-band OFDM physical layer proposal,” IEEE 802.15-03/ 267r5, Jul. 2003.
[2] B. Razavi, RF Microelectronics, Prentice Hall, 1997.
[3] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of
Analog Integrated Circuits, 4th Edition, John Wiley & Sons, Inc. 2001.
[4] A. Bevilacqua, A.M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259–2268, Dec. 2004.
[5] M. T. Reiha, and J. R. Long, “A 1.2 V reactive-feedback 3.1–10.6 GHz low-noise amplifier in 0.13 μm CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1023– 1033, May. 2007.
[6] Y.-J. Lin, S. S. H. Hsu, J.-D. Jin, and C. Y. Chan, “A 3.1–10.6 GHz ultra- wideband CMOS low noise amplifier with current-reused technique,” IEEE Microwave and Wireless Component Letter, vol. 17, no. 3, pp. 232–234, March 2007.
[7] F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Wide-band CMOS low- noise amplifier exploiting thermal noise canceling,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 275–282, Feb. 2004.
[8] C.-F. Liao, and S.-I. Liu, “A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 329–339, Feb. 2007.
[9] Q. Li, and Y. P. Zhang “A 1.5-V 2–9.6-GHz inductorless low-noise amplifier in 0.13-um CMOS,” IEEE Trans. Microw. Theory Tech, vol. 55, no. 10, pp. 2015– 2023, Oct. 2007.
[10] S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts, and B. Nauta, “An inductorless wideband balun-LNA in 65 nm CMOS with balanced output,” in Proc. 33rd Eur. Solid-State Circuits Conf. (ESSCIRC 2007), Munich, Germany, Sep. 2007, pp. 364–367.
[11] J.-H. C. Zhan and S. Taylor, “A 5 GHz resistive-feedback CMOS LNA for low- cost multi-standard application,” in IEEE ISSCC Tech. Dig., 2006, pp. 200–201.
[12] B. G. Perumana, J.-H. C. Zhan, S. S. Taylor, B. R. Carlton, and J. Laskar, “Resistive-feedback CMOS low-noise amplifiers for multiband applications,” IEEE Trans. Microw. Theory Tech, vol. 56, no. 5, pp. 1218–1225, May. 2008.
[13] T. Chang, J. Chen, L. A. Rigge, and J. Lin, “ESD-protected wideband CMOS LNAs using modified resistive feedback techniques with chip-on-board packaging,” IEEE Trans. Microw. Theory Tech, vol. 56, no. 5, pp. 1817–1826, Aug. 2008.
[14] J.-H. Lee, C.-C. Chen, H.-Y. Yang, and Y.-S. Lin, “A 2.5-dB NF 3.1–10.6 -GHz CMOS UWB LNA with small group-delay-variation,” in Proc. IEEE RFIC Symp., 2008, pp. 501–504.
[15] J. Borremans, P. Wambacq, C. Soens, Y. Rolain, and M. Kuijk, “Low-area active-feedback low-noise amplifier design in scaled digital CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2422–2433, Nov. 2008.
[16] Y.-J. Wang, and A. Hajimiri, “A compact low-noise weighted distributed amplifier in CMOS,” in IEEE ISSCC Tech. Dig., 2009, pp. 220–221.
[17] H. Zhang, X. Fan, and E. S. Sinencio, “A low-power, linearized, ultra- wideband LNA design technique,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 320–330, Feb. 2009.
[18] H.-K. Chen, D.-C. Chang, Y.-Z. Juang, and S.-S. Lu, “A compact wideband CMOS low-noise amplifier using shunt resistive-feedback and series inductive- peaking techniques,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 616–618, Aug. 2007.
[19] M. D. Tsai and H. Wang, “A 0.3–25 GHz ultra-wideband mixer using commercial 0.18-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 11, pp. 522–524, Nov. 2004.
[20] P.-Z. Rao, T.-Y. Chang, C.-P. Liang, and S.-J. Chung, ”A wideband CMOS mixer with feedforward compensated differential transconductor,” in IEEE ISCAS., 2007, pp. 3892–3895.
[21] F.-C. Chang, P.-C. Huang, S.-F. Chao, and H. Wang, “A low power folded mixer for UWB system applications in 0.18-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 367–369, May. 2007.
[22] J.-B. Seo, J.-H. Kim, H. Sun, and T.-Y. Yun, “A low-power and high-gain mixer for UWB systems,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 803–805, Dec. 2008.
[23] R. Bagheri et al., “An 800-MHz-6-GHz software-defined wireless receiver in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2860–2876, Dec. 2006.
[24] N. Poobuapheun et al., ”A 1.5-V 0.7–2.5-GHz CMOS quadrature demodulator for multiband direct-conversion receivers,” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp.1669–1677, Aug. 2007.
[25] J.-H. C. Zhan et al., ”A broadband low-cost direct-conversion receiver front-end in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1132–1137, May. 2008.
[26] N. Poobuapheun, W.-H. Chen, Z. Boos, and A. M. Niknejad, “An inductorless high dynamic range 0.3 – 2.6 GHz receiver CMOS front-end,” in Proc. IEEE RFIC Symp., 2009, pp. 387– 390.
[27] H. Darabi and A. A. Abidi, “Noise in RF-CMOS mixers: a simple physical model,” IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 15–25, Jan. 2000.
[28] S. Lee et al., “A broadband receive chain in 65nm CMOS,” in IEEE ISSCC Tech. Dig., 2007, pp. 418–419.
[29] Y.-H. Chen et al., “A 0.18μm CMOS receiver for 3.1 to 10.6GHz MB-OFDM UWB communication systems,” in Proc. IEEE RFIC Symp., 2006, pp. 297– 300.
[30] B. Shi et al., “An ultra-wideband CMOS receiver front-end,” in Proc. IEEE European Microwave Conf., 2007, pp. 1042–1045.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊