跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/05 22:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林勇志
研究生(外文):Lin, Yung-Chih
論文名稱:IrreducibleCuspidalCharactersofFiniteUnitaryGroupsandThetaCorrespondence
論文名稱(外文):有限酉群的不可約尖點特徵函數和Theta對應
指導教授:潘戍衍
指導教授(外文):Pan, Shu-Yen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
畢業學年度:97
語文別:英文
論文頁數:27
中文關鍵詞:Theta 對應尖點特徵函數
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
這篇論文裡,我們有興趣的是有限Unitary 群的不可約尖點群表現的
Theta 對應。首先要知道有限酉群哪些是unipotent 不可約尖點群表現,必須使用Lusztig 方法來判斷,然後我們使用酉群共軛類的centralizer 來決定有限酉群的不可約群表現哪些是尖點的,之後介紹Induction 法則和Preservation 法則,最後藉由使用Induction 原則和Preservation 法則討論有限酉群的不可約尖點群表現之間的Theta 對應,特別是對於這些有限酉群U0(q),U1(q),U2(q),和U3(q)相互之間Theta對應關係的結果。
In this paper we mainly discuss the theta corrspondence of irreducible cuspidal characters of finite unitary groups. Firstly, we distinguish irreducible unipotent characters of finite unitary groups by Lusztig's discussion. We use
the centralizers of semisimple elements of finite unitary groups to know which irreducible characters of finite unitary groups are cuspidal. Then we introduce the induction principle and preservation principle. Finally, we clarify the theta correspondence between unitary groups by the induction principle and preservation principle, especially for U0(q), U1(q), U2(q), and U3(q).
Contents
1 Introduction . . . . . . . . . . . . . . . . . .2
1.1 Linear Representations of Finite Groups . . . . 2
1.2 Symmetric and Skew-Symmetric Bilinear Forms and Hermitian Forms . . . . . . . . . . . . . . . . . . 4
1.3 The Classical Finite Groups of Lie Type Un . . 5
2 Definition of Theta Correspondence . . . . . . . .7
2.1 Weil Representation of Spn . . . . . . . . . . .7
2.2 Theta Correspondence . .. . . . . . . . . . . . 8
3 Induction Principle and Preservation Principle . 11
3.1 Witt Towers . . . . . . . . . . . . . . . . . 11
3.2 Induction Principle . . . . . . . . . . . . .. 12
3.3 Preservation Principle . . . . . . . . . . . . 12
4 The Chain of Irreducible Cuspidal representations of Finite Unitary Groups . . . . . . . . . . . . . . 15
4.1 Introduction . . . . . . . . . . . . . . . . . 15
4.2 The Unitary Group U0(q) . . . . . . . . . . . 16
4.3 The Unitary Group U1(q) . . . . . . . . . . . .16
4.4 The Unitary Group U2(q) . . . . . . . . . . . 17
4.5 The Unitary Group U3(q) . . . . . . . . . . . 20
reference . . . . . . . . . . . . . . . . . . . . .27
References
[Car85] R.W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, Pure and Applied Mathematics, New York (1985).
[DM91] F. Digne and J. Michel, Representations of finite groups of Lie type,Cambridge University Press, 1991.
[Enn63] V. Ennola, On the characters of the finite unitary groups, Ann.Acad. Sci. Fenn. Math. 323 (1963), 3–35.
[Kaw76] N. Kawanaka, On the irreducible characters of the finite unitary groups, Proc. Japan Acad. 52 (1976), no. 3, 95–97.
[Kaw77] , On the irreducible characters of the finite unitary groups,J. Math. Soc. Japan 29 (1977), 425–450.
[Kud86] S.S. Kudla, On the local theta-correspondence, Inventiones mathematicae 83 (1986), no. 2, 229–255.
[Noz72] S. Nozawa, Characters of the finite general unitary group U(4, q2),Fac. Sci. Univ. Tokyo 19 (1972), 257–293.
[Noz76] , Characters of the finite general unitary group U(5, q2), Fac.Sci. Univ. Tokyo 23 (1976), 23–74.
[Pan02] SY Pan, Local theta correspondence of depth zero representations and theta dichotomy, J. Math. Soc. Japan 54 (2002), 793–845.
[Rob94] Brooks Roberts, Lecture notes, University of Maryland, College Park, 1994.
[Ser73] J.P. Serre, A course in arithmetic, Springer, 1973.
[Ser77] , Linear representations of finite groups, Springer Verlag,1977.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文