跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/10 23:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅時鈞
研究生(外文):Luo,Shyh-Jyun
論文名稱:以化學氣相沉積法合成單壁奈米碳管臨場製作懸空奈米碳管元件光導現象之研究
論文名稱(外文):Investigation of Photoconductivity of Suspended Carbon Nanotube Device with in situ Chemical Vapor Deposition Grown Single-Walled Carbon Nanotubes
指導教授:柳克強蔡春鴻蔡春鴻引用關係
指導教授(外文):Leou,Keh-ChyangTsai,Chuen-Horng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:110
中文關鍵詞:單壁奈米碳管場效電晶體光導現象化學氣相沉積法懸空
外文關鍵詞:Single-walled carbon nanotubesField-effect transistorPhotoconductivityChemical vapor depositionSuspended
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:79
  • 收藏至我的研究室書目清單書目收藏:0
奈米碳管(carbon nanotube, CNT)具有優異的電性,所以奈米碳管電晶體具有相當大的潛力應用於未來的奈米電子元件。在本研究中以本實驗室發展的SiO2/Ni構成的雙層催化劑結構為基礎,在二氧化矽基版上蒸鍍催化劑,再經由高溫化學氣相沉積(Thermal Chemical Vapor Depositon, Thermal CVD)的方式成長單壁奈米碳管,進一步製作成奈米碳管場效電晶體(CNT-FET)。此方法能有效的定位奈米碳管,並能由雙層催化劑的鍍率控制奈米碳管的密度、長度以及直徑。
在本研究中,採用波長分別為488 nm、632.8 nm、785 nm之激發源,量測背閘極奈米碳管場效電晶體之光電流。在背閘極元件量測上,需施加適當的閘極偏壓,減少電子堆積於Si/SiO2界面,避免出現photogating現象;所量測的元件對波長為632.8 nm之激發源轉換效率最佳,達到4.93×10-7,經量測碳管直徑後研判使用之激發源激發了碳管的第二激發態,且光電流大小與汲極偏和激發源強度成線性關係。
在懸空結構元件的製作上,採用先行製作蝕刻溝槽,並在電極上蒸鍍催化劑後,直接成長單壁奈米碳管於金屬電極上,成功跨長奈米碳管於深1 μm、寬8 μm的溝槽,完成懸空元件的結構。
在懸空元件電性量測上,懸空奈米碳管元件因閘極調變能力不佳,有效的避免了photogating效應;在光電流的量測上,懸空結構減少了SiO2基版捕捉碳管中的載子,轉換效率約為10-4,有效的增強了電信號之強度。
摘要 I
誌謝 III
目錄 VI
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1-1 奈米碳管的材料結構與能態 1
1-2 奈米碳管場效電晶體 4
1-2-1 奈米碳管場效電晶體的結構 4
1-2-2 奈米碳管場效電晶體的工作原理 7
1-2-3 奈米碳管場效電晶體的傳輸特性 9
1-3 奈米碳管的光學性質 11
1-3-1 光致發光 11
1-3-2 電致發光 12
第二章 文獻回顧 15
2-1單根奈米碳管的光導現象 15
2-2 氣體分子吸附與光電流 19
2-3 photogating效應 21
2-4 懸空奈米碳管的電性及光學特性 23
2-4-1 懸空奈米碳管元件的製作及電性 23
2-4-2 懸空奈米碳管的光學特性 28
2-5 懸空奈米碳管的光導現象 30
2-5-1 部分懸空奈米碳管元件光導現象 30
2-5-2 懸空奈米碳管薄膜的光導現象 32
2-6 研究動機 33
第三章 研究方法與實驗設備 35
3-1 研究方法 35
3-2 試片製備 36
3-2-1 背閘極奈米碳管場效電晶體試片製備 36
3-2-2 懸空奈米碳管元件試片製備流程及光罩圖形 39
3-3 實驗設備 42
3-3-1 高溫化學氣相沉積系統(Thermal CVD) 43
3-3-2 掃瞄電子顯微鏡(Scanning Electron Microscopy) 45
3-3-3 電子束微影設備(JSM-6380) 46
3-3-4 多探針奈米電性量測系統 48
3-3-5 微拉曼光譜儀(Micro Raman Spectroscopy) 51
第四章 實驗結果與討論 52
4-1 鈦電極製作背閘極結構奈米碳管場效電晶體 52
4-1-1 兩端點量測 52
4-1-2 三端點量測 53
4-1-3 電崩潰實驗 55
4-2 閘極介電層厚度對奈米碳管場效電晶體效能影響 57
4-3 背閘極結構奈米碳管場效電晶體之光導現象 59
4-3-1 三端點量測 59
4-3-2 閘極偏壓對光電流之影響 61
4-3-3 汲極偏壓對光電流之影響 63
4-3-4 激發源之功率密度對光電流之影響 64
4-3-5 激發源波長對光電流之影響 67
4-4 懸空奈米碳管元件的製作 72
4-4-1 後蝕刻製程 72
4-4-2 直接於金屬電極成長單壁奈米碳管 75
4-5 懸空奈米碳管的電性及拉曼光譜分析 78
4-6 懸空奈米碳管的光導現象 81
4-6-1 三端點量測 81
4-6-2 激發源功率密度對光電流之影響 82
4-6-3 激發源波長對光電流之影響 87
第五章 總結與未來展望 91
5-1 總結 91
5-1-1 背閘極結構奈米碳管場效電晶體之光電流量測 91
5-1-2 懸空奈米碳管元件之製作 91
5-1-3 懸空奈米碳管元件電性量測 92
5-1-4 懸空奈米碳管元件光電流量測 92
5-2 未來展望 93
附錄A 背閘極元件B2光電流量測之Time-Current曲線 95
附錄B 懸空元件TS1光電流量測之Time-Current曲線 100
附錄C 懸空元件TS2光電流量測之Time-Current曲線 102
參考文獻 106
[1] S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes Basic concepts and physical properties, 2004.
[2] M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes:Synthesis, Structure, Properties, and Applications. Berlin: Springer, 2002.
[3] S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, "Structure-assigned optical spectra of single-walled carbon nanotubes," Science, vol. 298, pp. 2361-2366, 2002.
[4] M. P. Anantram and F. Leonard, "Physics of carbon nanotube electronic devices," Reports on Progress in Physics, vol. 69, pp. 507-561, 2006.
[5] S. J. Tans, A. R. M. Verschueren, and C. Dekker, "Room-temperature transistor based on a single carbon nanotube," Nature, vol. 393, pp. 49-52, 1998.
[6] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, "Single- and multi-wall carbon nanotube field-effect transistors," Applied Physics Letters, vol. 73, pp. 2447-2449, 1998.
[7] P. Avouris, "Molecular electronics with carbon nanotubes," Accounts of Chemical Research, vol. 35, pp. 1026-1034, 2002.
[8] L. A. W. Robinson, S. B. Lee, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. A. Williams, D. G. Hasko, and H. Ahmed, "Fabrication of self-aligned side gates to carbon nanotubes," Nanotechnology, vol. 14, pp. 290-293, 2003.
[9] A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H. J. Dai, "High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates," Nature Materials, vol. 1, pp. 241-246, 2002.
[10] A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. W. Wang, R. G. Gordon, M. Lundstrom, and H. J. Dai, "Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics," Nano Letters, vol. 4, pp. 447-450, 2004.
[11] A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. J. Dai, "Ballistic carbon nanotube field-effect transistors," Nature, vol. 424, pp. 654-657, 2003.
[12] J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S. Wind, and P. Avouris, "Field-modulated carrier transport in carbon nanotube transistors," Physical Review Letters, vol. 89, 2002.
[13] J. Appenzeller, M. Radosavljevic, J. Knoch, and P. Avouris, "Tunneling versus thermionic emission in one-dimensional semiconductors," Physical Review Letters, vol. 92, 2004.
[14] S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and P. Avouris, "Carbon nanotubes as Schottky barrier transistors," Physical Review Letters, vol. 89, 2002.
[15] W. Kim, A. Javey, R. Tu, J. Cao, Q. Wang, and H. J. Dai, "Electrical contacts to carbon nanotubes down to 1 nm in diameter," Applied Physics Letters, vol. 87, 2005.
[16] Y. C. Tseng, K. Phoa, D. Carlton, and J. Bokor, "Effect of diameter variation in a large set of carbon nanotube transistors," Nano Letters, vol. 6, pp. 1364-1368, 2006.
[17] Z. H. Chen, J. Appenzeller, J. Knoch, Y. M. Lin, and P. Avouris, "The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors," Nano Letters, vol. 5, pp. 1497-1502, 2005.
[18] F. Leonard and J. Tersoff, "Role of Fermi-level pinning in nanotube Schottky diodes," Physical Review Letters, vol. 84, pp. 4693-4696, 2000.
[19] F. Leonard and J. Tersoff, "Multiple functionality in nanotube transistors," Physical Review Letters, vol. 88, 2002.
[20] V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, "Controlling doping and carrier injection in carbon nanotube transistors," Applied Physics Letters, vol. 80, pp. 2773-2775, 2002.
[21] D. Kang, N. Park, J. H. Ko, E. Bae, and W. Park, "Oxygen-induced p-type doping of a long individual single-walled carbon nanotube," Nanotechnology, vol. 16, pp. 1048-1052, 2005.
[22] A. Javey, R. Tu, D. B. Farmer, J. Guo, R. G. Gordon, and H. J. Dai, "High performance n-type carbon nanotube field-effect transistors with chemically doped contacts," Nano Letters, vol. 5, pp. 345-348, 2005.
[23] H. M. Manohara, E. W. Wong, E. Schlecht, B. D. Hunt, and P. H. Siegel, "Carbon nanotube Schottky diodes using Ti-Schottky and Pt-Ohmic contacts for high frequency applications," Nano Letters, vol. 5, pp. 1469-1474, 2005.
[24] C. G. Lu, L. An, Q. A. Fu, J. Liu, H. Zhang, and J. Murduck, "Schottky diodes from asymmetric metal-nanotube contacts," Applied Physics Letters, vol. 88, 2006.
[25] Y. Nosho, Y. Ohno, S. Kishimoto, and T. Mizutani, "n-Type carbon nanotube field-effect transistors fabricated by using Ca contact electrodes," Applied Physics Letters, vol. 86, 2005.
[26] H. Maki, T. Sato, and K. Ishibashi, "Transport characteristic control of field-effect transistors with single-walled carbon nanotube films using electrode metals with low and high work functions," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 45, pp. 7234-7236, 2006.
[27] Y. M. Lin, J. Appenzeller, and P. Avouris, "Ambipolar-to-unipolar conversion of carbon nanotube transistors by gate structure engineering," Nano Letters, vol. 4, pp. 947-950, 2004.
[28] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, "Optical properties of single-wall carbon nanotubes," Synthetic Metals, vol. 103, pp. 2555-2558, 1999.
[29] M. S. Dresselhaus and P. C. Eklund, "Phonons in carbon nanotubes," Advances in Physics, vol. 49, pp. 705-814, 2000.
[30] J. A. Misewich, R. Martel, P. Avouris, J. C. Tsang, S. Heinze, and J. Tersoff, "Electrically induced optical emission from a carbon nanotube FET," Science, vol. 300, pp. 783-786, 2003.
[31] M. Freitag, J. Chen, J. Tersoff, J. C. Tsang, Q. Fu, J. Liu, and P. Avouris, "Mobile ambipolar domain in carbon-nanotube infrared emitters," Physical Review Letters, vol. 93, 2004.
[32] J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, "Bright infrared emission from electrically induced excitons in carbon nanotubes," Science, vol. 310, pp. 1171-1174, 2005.
[33] J. Chen, M. Freitag, C. Klinke, A. Afzali, J. Tsang, and P. Avouris, "Carbon nanotube electronics and optoelectronics," Abstracts of Papers of the American Chemical Society, vol. 229, pp. U925-U925, 2005.
[34] M. Freitag, J. C. Tsang, J. Kirtley, A. Carlsen, J. Chen, A. Troeman, H. Hilgenkamp, and P. Avouris, "Electrically excited, localized infrared emission from single carbon nanotubes," Nano Letters, vol. 6, pp. 1425-1433, 2006.
[35] A. Fujiwara, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, "Photoconductivity in semiconducting single-walled carbon nanotubes," Japanese Journal of Applied Physics Part 2-Letters, vol. 40, pp. L1229-L1231, 2001.
[36] M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and P. H. Avouris, "Photoconductivity of single carbon nanotubes," Nano Letters, vol. 3, pp. 1067-1071, 2003.
[37] M. S. Marcus, J. M. Simmons, O. M. Castellini, R. J. Hamers, and M. A. Eriksson, "Photogating carbon nanotube transistors," Journal of Applied Physics, vol. 100, 2006.
[38] R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. G. Zhang, and H. J. Dai, "Molecular photodesorption from single-walled carbon nanotubes," Applied Physics Letters, vol. 79, pp. 2258-2260, 2001.
[39] R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. K. Chan, J. Tersoff, and P. Avouris, "Ambipolar electrical transport in semiconducting single-wall carbon nanotubes," Physical Review Letters, vol. 87, 2001.
[40] Y. Ohno, S. Kishimoto, T. Mizutani, T. Okazaki, and H. Shinohara, "Chirality assignment of individual single-walled carbon nanotubes in carbon nanotube field-effect transistors by micro-photocurrent spectroscopy," Applied Physics Letters, vol. 84, pp. 1368-1370, 2004.
[41] N. R. Franklin, Q. Wang, T. W. Tombler, A. Javey, M. Shim, and H. J. Dai, "Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems," Applied Physics Letters, vol. 81, pp. 913-915, 2002.
[42] B. Witkamp, M. Poot, and H. S. J. van der Zant, "Bending-mode vibration of a suspended nanotube resonator," Nano Letters, vol. 6, pp. 2904-2908, 2006.
[43] Y. M. Lin, J. C. Tsang, M. Freitag, and P. Avouris, "Impact of oxide substrate on electrical and optical properties of carbon nanotube devices," Nanotechnology, vol. 18, 2007.
[44] W. Kim, A. Javey, O. Vermesh, O. Wang, Y. M. Li, and H. J. Dai, "Hysteresis caused by water molecules in carbon nanotube field-effect transistors," Nano Letters, vol. 3, pp. 193-198, 2003.
[45] E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, and H. J. Dai, "Negative differential conductance and hot phonons in suspended nanotube molecular wires," Physical Review Letters, vol. 95, 2005.
[46] P. E. Roche, M. Kociak, S. Gueron, A. Kasumov, B. Reulet, and H. Bouchiat, "Very low shot noise in carbon nanotubes," European Physical Journal B, vol. 28, pp. 217-222, 2002.
[47] F. Liu, M. Q. Bao, H. J. Kim, K. L. Wang, C. Li, X. L. Liu, and C. W. Zhou, "Giant random telegraph signals in the carbon nanotubes as a single defect probe," Applied Physics Letters, vol. 86, 2005.
[48] E. S. Snow, J. P. Novak, M. D. Lay, and F. K. Perkins, "1/f noise in single-walled carbon nanotube devices," Applied Physics Letters, vol. 85, pp. 4172-4174, 2004.
[49] Y. M. Lin, J. Appenzeller, Z. H. Chen, and P. Avouris, "Electrical transport and 1/f noise in semiconducting carbon nanotubes," Physica E-Low-Dimensional Systems & Nanostructures, vol. 37, pp. 72-77, 2007.
[50] Y. Ohno, S. Kishimoto, and T. Mizutani, "Photoluminescence of single-walled carbon nanotubes in field-effect transistors," Nanotechnology, vol. 17, pp. 549-555, 2006.
[51] Y. H. Ahn, A. W. Tsen, B. Kim, Y. W. Park, and J. Park, "Photocurrent imaging of p-n junctions in ambipolar carbon nanotube transistors," Nano Letters, vol. 7, pp. 3320-3323, 2007.
[52] M. E. Itkis, F. Borondics, A. P. Yu, and R. C. Haddon, "Bolometric infrared photoresponse of suspended single-walled carbon nanotube films," Science, vol. 312, pp. 413-416, 2006.
[53] W. Y. Lee, "Chemical Vapor Deposition Growth of Single-Walled Carbon Nanotubes for Electronic Applications," in Department of Engineering and System Science. vol. Doctoral of Philosophy Hsinchu: National Tsing Hua University, 2007.
[54] H. Cao, Q. Wang, D. W. Wang, and H. J. Dai, "Suspended carbon nanotube quantum wires with two gates," Small, vol. 1, pp. 138-141, 2005.
[55] R. V. Seidel, A. P. Graham, B. Rajasekharan, E. Unger, M. Liebau, G. S. Duesberg, F. Kreupl, and W. Hoenlein, "Bias dependence and electrical breakdown of small diameter single-walled carbon nanotubes," Journal of Applied Physics, vol. 96, pp. 6694-6699, 2004.
[56] Y. Ohno, S. Kishimoto, and T. Mizutani, "Photoresponse of carbon nanotube field-effect transistors," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 44, pp. 1592-1595, Apr 2005.
[57] J. C. Bunning, K. J. Donovan, K. Scott, and M. Somerton, "Bimolecular recombination on carbon nanotubes," Physical Review B, vol. 71, p. 6, Feb 2005.
[58] G. N. Ostojic, S. Zaric, J. Kono, M. S. Strano, V. C. Moore, R. H. Hauge, and R. E. Smalley, "Interband recombination dynamics in resonantly excited single-walled carbon nanotubes," Physical Review Letters, vol. 92, p. 4, Mar 2004.
[59] I. A. Levitsky and W. B. Euler, "Photoconductivity of single-wall carbon nanotubes under continuous-wave near-infrared illumination," Applied Physics Letters, vol. 83, pp. 1857-1859, Sep 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊