跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/13 10:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪皓晃
研究生(外文):huao huan
論文名稱:射頻前端濾波器電路之研製與應用
論文名稱(外文):The Design and Fabrication of the Front-endBandpass Filter in RF System
指導教授:陳居毓
指導教授(外文):Chi-Yi Chen
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:70
中文關鍵詞:濾波器返回損耗輸入損耗巴倫
外文關鍵詞:bandpass filterinsertion lossreturn lossbalun
相關次數:
  • 被引用被引用:0
  • 點閱點閱:476
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,用在無線區域網路WLAN(Wireless local area network)、超寬頻
UWB(Ultra-wideband)通訊系統中之射頻帶通濾波器將被探討、設計及研製。結合微帶線和共平面波導架構組合成之超寬頻帶通濾波器,係利用開路共平面步階式阻抗共振器激發多模之共振模態來形成超寬頻通帶。
符合2.4/5.2 GHz、2.4/5.7 GHz 規範之WLAN 雙頻濾波器利用兩種不同架構去實現。其中一組架構為共面波導結合CMRC(compact microstrip resonator cell)共振器激發出雙頻通帶。操作頻率在2.4GHz 時,藉由磁耦合路徑耦合到CMRC 共振器中,並激發出
第一通帶。且利用共面間平行耦合線的耦合可以產生第二通帶。在2.4/5.2GHz 量測中,2.4GHz 時插入損失小於1.6 dB,返回損失大於10dB,5.2GHz 時插入損失小於1.9 dB,返回損失大於15 dB。在2.4/5.7GHz 量測中,2.4GHz 時插入損失小於0.9 dB,返回損
失大於26 dB,5.7GHz 時插入損失小於2 dB,返回損失大於14 dB。
另一組結構的設計,則是利用直接饋入的三階環型共振器,並結合步階式阻抗設計出WLAN 雙頻濾波器。在2.4/5.2GHz 量測中,2.4GHz 時插入損失小於1.4 dB,返回損失大於10.6dB,5.2GHz 時插入損失小於2.4 dB,返回損失大於18 dB。在2.4/5.7GHz
量測中,2.4GHz 時插入損失小於1.35 dB,返回損失大於15.28 dB,5.7GHz 時插入損失小於2.51 dB,返回損失大於17.95 dB。同時利用此架構實現非平衡訊號轉成平衡式
訊號之轉換器和濾波器的整合,在輸出的兩埠相對於輸入埠之路徑差為180 度。在頻率2.4GHz 量測中,差動端之插入損失分別小於4.49 和5.21 dB,單端返回損失大於8.44dB,兩埠路徑能量相差在1.4dB 內,且兩埠路徑相位誤差小於2°。在頻率5.1GHz
量測中,差動端之插入損失分別小於5.61 和6.27dB,單端返回損失大於12.26dB,兩埠路徑能量相差在1.48dB 內,且兩埠路徑相位誤差為小於0°。
In this thesis, the filters operated at microwave band are designed, investigated and fabricated. The designed components can be applied to the applications of the WLAN
(Wireless Local Area Network) and UWB (Ultra-Wideband) communication system. The UWB filter is characterized a surface-to-surface the microstrip/coplanar waveguide(CPW)
coupling structure. The CPW open-end multiple-mode resonator(MMR) can excite three resonator modes to generate wide band.
Two kinds of the WLAN filters operated at 2.4/5.2GHz and 2.4/5.7GHz are fabricated for this aspect. The first one using broadside coupling and integrating the conventional CPW structure with a compact microstrip resonant cell (CMRC) together is proposed. This CPW parallel-coupled structure is designed to resonate at the frequency of 5GHz. The CMRC is implemented on the backside of the substrate to create another transmission band of 2.4GHz.
The second dual-band filter is composed of rectangular ring and step-impedance resonators. The step-impedance resonator can alternate impedance ratio to control both lower and higher operation bands in the dual-band filter design. Finally, the similar structure is further applied to the design of the balun filter. The balun is a device for converting an unbalanced signal to a balanced one, or vice versa. A balanced signal consists of two signal
components with 180∘out-of phase. By adjusting the output feeding lines, two paths from the input feeding port to the output feeding port are formed. One of the paths is about λ/4 and another one is about 3λ/4. The difference between two paths is about λ/2 to meet the requirement of 180∘.
摘要......................................................v
Abstract................................................vvi
致謝....................................................vii
目錄...................................................viii
表目錄....................................................x
圖目錄...................................................xi
第一章 緒論...............................................1
1.1 超寬頻UWB 簡介........................................1
1.2 無線區域網路WLAN 簡介.................................1
1.3 濾波器簡介........................................... 2
1.4 章節簡介............................................. 3
第二章 微波濾波器........................................ 4
2.1 濾波器重要參數簡介....................................4
2.2 分散式濾波器..........................................7
2.2.1 簡介................................................7
2.2.2 理查轉換(Richard’s transformation) ................7
2.2.3 黑田恆等式(Kuroda’s identities)....................9
2.2.4 阻抗與導納反轉器...................................12
第三章 超寬頻帶通濾波器設計..............................14
3.1 步階式阻抗共振器.....................................14
3.2 設計原理.............................................18
3.3 模擬與實作.......................................... 21
第四章 雙頻帶通濾波器................................... 23
4.1 共平面波導.......................................... 23
4.1.1 簡介.............................................. 23
4.1.2 傳統型共平面波導.................................. 24
4.1.3 背面有金屬之共平面波導............................ 28
4.2 精簡微帶線共振器(CMRC)簡介.......................... 30
4.3 設計原理............................................ 35
4.4 模擬與量測.......................................... 42
第五章 環形雙頻非平衡和平衡式轉換器之濾波器............. 44
5.1 非平衡和平衡式轉換器(balanced-to-unbalanced, Balun)之濾波器簡介.. ..............................................44
5.2 環形共振器濾波器.................................... 45
5.2.1 簡介.............................................. 45
5.2.2 雙頻濾波器設計原理................................ 50
5.3 非平衡和平衡式轉換器之濾波器........................ 57
5.3.1 非平衡和平衡式轉換器之濾波器設計原理.............. 57
5.3.2 雙頻Balun 帶通濾波器模擬與量測.................... 60
第六章 結論............................................. 66
6.1 總結.................................................66
6.2 未來展望.............................................67
參考文獻.................................................68
[1] S. B. Cohn, “Parallel-coupled transmission-line-resonator filter, ” IRE Trans. Microwave Theory Tech., vol. MTT-6, pp.223-231, April 1958.
[2] J. S. Hong and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for crosscoupled planar microwave filters,” IEEE Trans. Microwave. Theory Tech., vol. 44,no. 11, pp. 2099-2109, Nov. 1996.
[3] J. T. Kuo, S. P. Chen, and M. Jiang, “Parallel coupled microstrip filters with over-coupled end stages for suppression of spurious responses,” IEEE. Microwave.
Wireless Compon Lett., vol.13, no. 10, pp. 440-442, Oct. 2003.
[4] G. L. Matthaei, “Interdigital bandpass filters,” IEEE Trans. Microwave. Theory Tech, vol. MTT-10, no. 7, pp. 479-491, Jul. 1962.
[5] J. S. Wong, “Microstrip tapped-line filter design,” IEEE Trans. Microwave. Theory Tech,vol. MTT-27, no. 1, pp. 44-50, Jan. 1979.
[6] W. Menzel, L. Zhu, K. Wu and F. Bogelsack, “Compact broadband planar filters,”European Microwave Conference, 2001, pp.1-4,.
[7] M. Makimoto, S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microwave Theory Tech., vol. MTT-28, no. 12,
pp.1413-1417, Dec. 1980.
[8] L. Zhu, W. Menzel, K. Wu and F. Boegelsack, “Theoretical characterization and experimental verification of a novel compact broadband microstrip bandpass filter,” AsiaPacific Microwave Conference, 2001, pp. 625 – 628.
[9] Shaman, H.N., and Jia-Sheng Hong, “A compact ultra-wideband (UWB) bandpass filter with transmission zero,” European Microwave Conference, 2006 , pp.603-605.
[10] Sagawa M, Makimoto M, Yamashita S, “Geometrical structures and fundamentalcharacteristics of microwave stepped-impedance resonators,” IEEE Trans. Microwave
Theory Tech., vol. 45 , no 7, pp.1078-1085, July 1997.
[11] H. Wang, H. L. Zhu, and W. Menzel, “Ultra-wideband (UWB) bandpass filter with hybride microstrip/cpw structure,” IEEE Microwave Wireless Compon. Lett., vol. 15, no.12, pp. 844-846, Dec. 2005.
[12] J. Gao, W. Menzel, and F, Bogelsack, “Short-circuit cpw multiple-mode resonator for ultra-wideband(UWB) bandpass filter ,” IEEE Microwave Wireless Compon. Lett., vol.16, no. 3, pp. 104-106, March 2006.
[13] C. P. Wen, “Coplanar waveguide: a surface strip transmission line suitable for nonreciprocal gyromagnetic device application," IEEE Transactions on Microwave
Theory and Techniques, vol.17, no. 12, pp.1087-1090, December 1969.
[14] S. Gevorgian, L. J. P. Linner and E. L. Kollberg, ‘‘CAD models for shielded multilayered CPW,’’ IEEE Trans. Microwave Theory Tech., vol. 43, no. 4,pp.
772—779,April 1995.
[15]G. Ghione and C. Naldi, ‘‘Analytical formulas for coplanar lines in hybrid and monolithic MICs,’’ Electron. Lett.,vol. 20, no. 4, pp. 179—181,Feb. 1984.
[16] C. Veyres and V. Fouad Hanna, ‘‘Extension of the application of conformal mapping techniques to coplanar lines with finite dimensions,’’ Int. J. Electron., vol. 48, no. 1, pp. 47—56, Jan. 1980.
[17]G. Ghione and C. U. Naldi, ‘‘Parameters of coplanar waveguides with lower ground plane,’’ Electron. Lett., vol. 19, no. 18, pp. 734—735, Sept. 1983.
[18] K. M. Shum, T. T. Mo, Q. Xue, and C. H. Chan “A compact bandpass filter with two tuning transmission zeros using a CMRC resonator," IEEE Transactions on
Microwave Theory and Techniques, vol.53, no.3, pp.895-899, March 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊