跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/15 14:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪貫捷
研究生(外文):Kuan-Chieh Hung
論文名稱:都市噪音對於白頭翁(Pycnonotussinensis)鳴聲的影響
論文名稱(外文):Song adjustment of Chinese bulbuls (Pycnonotus sinensis) in urbanized areas
指導教授:李壽先李壽先引用關係劉小如劉小如引用關係
指導教授(外文):Shou-Hsien LiLucia Liu Severinghaus
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:32
中文關鍵詞:Chinese bulbulsPycnonotus sinensisnoiseurbanvocalization adjustmentsong
外文關鍵詞:白頭翁Pycnonotus sinensis噪音都市聲音調整鳴唱
相關次數:
  • 被引用被引用:4
  • 點閱點閱:799
  • 評分評分:
  • 下載下載:134
  • 收藏至我的研究室書目清單書目收藏:3
都市地區的擴張改變了生物居住的環境,野生動物必須面對強烈地人為選汰壓力,才能成功生活在都市地區。本研究在2008年三月到六月於台北市區以及台北縣的深坑鎮錄取了71隻白頭翁(Pycnonotus sinensis)的領域宣示鳴聲,並測量每段鳴唱之主要頻率、最高頻率、最低頻率、頻寬及持續時間等特徵以及當時低頻噪音的音量,以瞭解鳥類如何改變聲音溝通模式,以因應人為產生之低頻噪音。結果顯示,白頭翁領域宣示鳴聲的最低頻率會隨著低頻噪音的音量增加而提升(multiple linear regression, b=942.46, t=2.89, P=0.0052),且此趨勢在台北市區與深坑鎮間並無顯著差異(t=0.397, P>0.05)。同時在主要頻率、最高頻率以及頻寬上則存在空間結構 (Moran’s I correlogram, P<0.05),但在最低頻率上並無空間結構的存在(Moran’s I correlogram, P>0.05)。然而最低頻率與背景噪音的空間結構相似,且最低頻率的殘差也沒有空間結構(Moran’s I correlogram, P<0.05),代表最低頻率與背景噪音音量有緊密的關係。本實驗結果顯示都市地區的白頭翁會改變鳴唱之最低頻率的方式來抵抗低頻噪音的遮蔽效應,其機制可能來自於鳴唱行為的可塑性,且與鳴聲的學習過程應無直接的關係。
Urban areas have sprawled recently, accompanied by dramatic alteration of abiotic and biotic environments. Therefore, to live in urban areas, wildlife must adjust their behavior to adapt to anthropogenic selection pressure. To reveal how birds modulate their vocal communication to accommodate noisy urban environment, advertising songs of 71 Chinese bulbuls (Pycnonotus sinensis) were recorded in two urbanized areas: Taipei City (TP) and Shenkeng Township (SK) of the Taipei County in Taiwan, during March to June, 2008. Sound characteristics, such as the peak frequency, maximum frequency, minimum frequency, delta frequency, and time span of each song were measured. The results showed that the minimum frequency of songs in Chinese bulbuls increased with the background noise level (multiple linear regression, b= 942.46, t= 2.89, P=0.0052) and such relationship was not different between TP and SK (t1,65=0.397, P>0.05). In addition, I found that the peak frequency, maximum and delta frequency were spatially structured (Moran’s I correlogram, P<0.05), but not for the minimum frequency (Moran’s I correlogram, P>0.05). However, the spatial structures of the minimum frequency and background noise were similar in shape, and the residual minimum frequency had no spatial structure (Moran’s I correlogram, P>0.05), implying the minimum frequency was highly correlated with background noise. These results suggested that the mechanism of song adjustment against noise might be due to behavioral plasticity for Chinese bulbuls.
Abstract..............................i
中文摘要...............................ii
Table of Contents....................iii
List of Figures.......................iv
List of Tables.........................v
Introduction...........................1
Material and methods...................4
Results................................8
Discussion............................11
References............................15
Avian Biology, 37:601-608.
R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
Rabin, L. A. & Greene, C. M. 2002. Changes to acoustic communication systems in human-altered environments. Journal of Comparative Psychology, 116:137-141.
Rheindt, F. E. 2003. The impact of roads on birds: Does song frequency play a role in determining susceptibility to noise pollution? Journal of Ornithology, 144:295-306.
Rosenberg, M. S. 2009. PASSAGE: pattern analysis, spatial statistics, and geographic exegesis. Version 2.0. Department of Biology, Arizona State University, Tempe, AZ.
Slabbekoom, H. 2004. Singing in the wild: the ecology of birdsong. In: Nature's Music: The Science of Birdsong (Ed. by Marler, P. & Slabbekoom, H.), pp. 178-205: Elseiver Academic Press.
Slabbekoorn, H. & Peet, M. 2003. Birds sing at a higher pitch in urban noise - Great tits hit the high notes to ensure that their mating calls are heard above the city's din. Nature, 424:267-267.
Slabbekoorn, H. & den Boer-Visser, A. 2006. Cities change the songs of birds. Current Biology, 16:2326-2331.
Swaddle, J. P. & Page, L. C. 2007. High levels of environmental noise erode pair preferences in zebra finches: implications for noise pollution. Animal Behaviour, 74:363-368.
Tumer, E. C. & Brainard, M. S. 2007. Performance variability enables adaptive plasticity of crystallized adult birdsong. Nature, 450:1240-1244.
Warren, P. S., Katti, M., Ermann, M. & Brazel, A. 2006. Urban bioacoustics: it's not just noise. Animal Behaviour, 71:491-502.
Wood, W. E. & Yezerinac, S. M. 2006. Song sparrow (Melospiza melodia) song varies with urban noise. Auk, 123:650-659.
Wright, A. J., Soto, N. A., Baldwin, A. L., Bateson, M., Beale, C. M., Clark, C., Deak, T., Edwards, E. F., Fernández, A., Godinho, A., Hatch, L., Kakuschke, A., Lusseau, D., Martineau, D., Romero, L. M., Weilgart, L., Wintle, B., Notarbartolo-di-Sciara, G. & Martin, V. 2007. Anthropogenic noise as a stressor in animals: A multidisciplinary perspective. Intermational Journal of Comparative Psychology, 20:250-273.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top