跳到主要內容

臺灣博碩士論文加值系統

(44.220.62.183) 您好!臺灣時間:2024/03/01 14:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李盈蓁
論文名稱:鐵/鉑(111)超薄膜上曝氧之組成與磁性研究
論文名稱(外文):Investigation of compositions and magnetic properties for ultrathin Fe/Pt(111) films after oxygen exposure
指導教授:蔡志申蔡志申引用關係何慧瑩
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:114
中文關鍵詞:表面磁光柯爾效應儀鉑(111)曝氧歐傑電子能譜儀
相關次數:
  • 被引用被引用:1
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們利用歐傑電子能譜儀(AES)及表面磁光柯爾效應儀(SMOKE)探測鐵超薄膜在純白金上經曝氧後的成分及磁性變化。在室溫下對鐵/鉑(111)系統曝氧,樣品表面含氧量隨著曝氧量增加而變大,當樣品表面含氧量達到飽和之後,表面含氧量即不再變化。從曝氧量的分析得知,平整的鐵薄膜表面較易形成鐵氧的化合,當表面形成氧化鐵之後,會開始出現島狀結構使表面變得不平坦,此時氧原子進行物理吸附速度會加快。不同厚度的鐵/鉑(111)樣品曝氧後,磁化易軸與未曝氧的系統一樣皆為縱向,然而受到表面形成之氧化鐵為弱鐵磁性所影響,表面曝氧達飽和吸附後,柯爾訊號會變弱。分析熱退火對曝氧前後之2 ML、3 ML鐵/鉑(111)系統的矯頑場之影響,我們發現無論是曝氧前或曝氧後的系統,其矯頑場在退火之後皆會上升,但是曝氧後的樣品矯頑場在較低的退火溫度即開始上升,可能是因為表面形成之氧化鐵具有鍵能較強的離子鍵,使得鐵原子不易向鉑基底擴散,因此能和鉑形成合金的純鐵厚度減少,使混合溫度提前。另外,鐵鉑合金會使矯頑場上升,然而表面氧化鐵形成會造成樣品的居禮溫度下降,此兩現象相互競爭,結果使矯頑場的變化並非隨著溫度升高而持續上升。從運用於磁記錄體的觀點出發來看,表面氧化鐵的形成對鐵鉑合金系統而言,因為不利於矯頑場增進的現象,因此較沒有實用的價值。
Auger electron spectroscopy (AES) and surface magneto-optical Kerr effect (SMOKE) were used to investigate compositions and magnetic properties of ultrathin Fe/Pt (111) films after oxygen exposure. We exposed oxygen onto the Fe/Pt(111) surface at room temperature. The concentration of surface oxygen increases with oxygen exposure until reaching a saturated value. When the iron becomes iron oxides on the surface, the surface becomes rough. This makes an increase of physical absorption of oxygen atoms on the surface. The magnetic easy axes are in the in-plane direction before and after oxygen exposure. The Kerr intensity at saturated condition decreases because of the weakly ferromagnetic properties of the iron oxides. The longitudinal coercivity of O2/2~3 ML Fe/Pt(111) raised after annealing both before and after oxygen exposure. The starting temperature of enhancing coercive force of O2/Fe/Pt(111) is lower than that before oxygen exposure. This may due to the strong ion bond of iron oxides. The ion bond between iron and oxygen atoms makes it more difficult for iron atoms to diffuse toward the Pt substrate. From this point of view, the thickness of pure iron on platinum surface decreased and this makes the decrease in the temperature of the Fe-Pt alloy formation. The coercive force increases when the iron and platinum form Fe-Pt alloy, meanwhile the formation of iron oxides will decrease the Curie temperature of the sample. Due to the competition of these two effects, the longitudinal coercivity of O2/2~3 ML Fe/Pt(111) does not continue to ascend with the annealing temperature. From this point of view, the formation of iron oxides is unfavorable for the application of Fe-Pt alloy on ultra-high density magnetic storage media.
Chapter 1 緒論 1

Chapter 2 基本原理 3
2-1薄膜成長 3
2-1-1成長模式………...........……….….....................................3
2-1-2影響薄膜成長的因素…….............……...….…................5
2-2鐵磁性物質..................................................................................6
2-2-1 磁性物質的種類………………..…………..…...............7
2-2-2 鐵磁性物質.....................................................................10
2-2-3 居禮溫度..........................................................................11
2-3氧吸附與氧化現象....................................................................12
2-3-1 鐵與氧的化合.................................................................12
2-2-2 電負度與能譜線的偏移.................................................15
2-4磁異向性....................................................................................16
2-4-1 磁異向能.........................................................................16
2-4-2 影響磁異向性的因素.....................................................18

Chapter 3 實驗原理與儀器...................................................................23
3-1超高真空系統(UHV).................................................................23
3-1-1 需要超高真空的理由.....................................................24
3-1-2 超高真空腔與抽氣系統.................................................26
3-1-3 樣品清潔與升降溫系統.................................................29
3-1-4 蒸鍍系統.........................................................................32
3-1-5 曝氧系統及氣體管路.....................................................33
3-1-6 其他系統.........................................................................35
3-2 歐傑電子能譜儀.......................................................................36
3-2-1 歐傑效應.........................................................................36
3-2-2 歐傑電子能譜.................................................................38
3-2-3 阻滯電場分析儀.............................................................40
3-2-4 歐傑電子能譜術的應用.................................................43
3-3 低能量電子繞射儀...................................................................49
3-3-1 低能量電子繞射儀之基本原理.....................................49
3-3-2阻滯電場分析儀工作原理...............................................50
3-4 表面磁光柯爾效應...................................................................52
3-4-1 磁光柯爾效應.................................................................52
3-4-2 SMOKE及測量原理........................................................54
3-4-3 表面磁光柯爾效應儀的元件.........................................56
3-4-4表面磁光柯爾效應儀器的架設程...................................59

Chapter 4 實驗結果與討論...................................................................61
4-1 樣品準備與鐵鍍源的鍍率校正.............................................61
4-2 Fe/Pt(111)系統曝氧之磁性分析與加熱退火效應...........62
4-2-1 1.2 ML Fe/Pt(111) 系統曝氧磁性探測........................63
4-2-2 2 ML Fe/Pt(111) 系統曝氧磁性探測與加熱退火效應................................................................................................69
4-2-3 3 ML Fe/Pt(111) 系統曝氧磁性探測與加熱退火效應................................................................................................80
4-2-4 5 ML Fe/Pt(111) 系統曝氧磁性探測與加熱退火效應................................................................................................88
4-3 常溫下在鐵/鉑(111)上曝氧所形成之氧化鐵磁性類型探討................................................................................................97
4-4 綜合比較分析...........................................................................99

Chapter 5 結論.....................................................................................105

參考資料................................................................................................109
[1] H. Le Gall, R. Sbiaa and S. Pogossian, J. Alloys Comp. 275-277, 677 (1998)
[2] 黃得瑞,"光碟記錄媒體的發展介紹",材料會訊,第6卷,第3期 ,6 (1999)
[3] 謝漢萍,"光碟記錄的發展及前瞻",材料會訊,第6卷,第3期,16 (1999)
[4] Herman J. Borg and Roel van Woudenberg, J. Magn. Magn. Mater.193, 519 (1999)
[5] Pei-Yih Liu and Han-Ping D. Shieh, J. Magn. Magn. Mater. 155, 385 (1996)
[6] Y. Murakami, A. Takahashi, S. Terashima, J. Phys .Chem .Sol 56, 1535 (1995)
[7] H. Awano, S. Ohnuki,H. Shirai and A. Ohta, Appl. Physi. Lett, Vol. 69, No. 27, 4257 (1996).
[8] D. Lambeth, in: G.C. Gadjipanayis (Ed.), NATO ASI Series E 338, 767 (1997).
[9] W. B. Zeper and F. J. A. M. Greidanus, J. Appl. Phys., 65, 497 (1989).
[10] C. H. Lee, H. He and W. Vavara, Phys. Rev. Lett., 62, 653 (1989).
[11] D. Pescia, G. Zampieri and G. L. Bona, Phys. Rev. Lett., 58, 933 (1987).
[12] N. C. Koon and B. T. Jonker, Phys. Rev. Lett., 59, 2463 (1987).
[13] C. S. Shern, S. L. Chen, J. S. Tsay, and R. H. Chen, Phys. Rev. B, 58, 7328 (1998).
[14] C. S. Shern, J. S. Tsay, S. L. Chen, and Y. E. Wu, J. Appl. Phys., 85, 228 (1999).
[15] C. W. Su, H. Y. Ho, C. S. Shern and R. H. Chen, Chin.J Phys. 41, 519 (2003).
[16] F. C. Chen, Y.E. Wu, C.W. Su, and C.S. Shern., Phys. Rev. B, 66, 184417 (2002).
[17] Robert C. O’Handley, Modern Magnetic Materials Principle and Applications, John Wiley & Sons, New York, (2000).
[18] L. Argile and G.E. Rhead, Surf. Sci. Rep. 10, 277 (1989)
[19] 陳福全,國立台灣師範大學碩士論文 (2002)
[20] 蔡萍實,國立台灣師範大學碩士論文 (1992)
[21] 何慧瑩,國立台灣師範大學碩士論文 (1998)
[22] 蘇炯武,國立台灣師範大學博士論文 (2003)
[23] 何慧瑩,國立台灣師範大學博士論文 (2006)
[24] 陳耀榮,國立台灣師範大學博士論文 (2008)
[25] D. K. Cheng, Field and Wave Electromagnetics 2/e, 3rd ed., Addison-Wesley, New York, (1989).
[26] E. Bauer, Appl. Surf. Sci. 11/12, 479 (1982)
[27] 張正武,國立中正大學碩士論文 (2004)
[28] C. Kittel, Introduction of Solid State Phys. , 7thed, John Wiley& Sons inc., New York, (1997).
[29] B. D. Cullity, Introduction to Magnetic Materials, Addison Wesley, New York (1972).
[30] 曾健家,國立台灣師範大學碩士論文 (2005)
[31] 聶亨芸,國立清華大學碩士論文 (2002)
[32] R. Shimizu, Jpn. J. Appl. Phys., 22, 1631 (1983)
[33] S. D. Bader, J. Magn. Magn. Mater. 100, 440 (1991)
[34] E. T. Kulatov, Yu. A. Uspenskii, S. V. Halilov, J. Magn. Magn. Mater., 163, 331 (1996)
[35] 黃柏翔,國立清華大學碩士論文(2003)
[36] Y.J. Kim, C. Westphal, R.X. Ynzunza, Z. Wang, H.C. Galloway, M. Salmeron, M.A. Van Hove and C.S. Fadley, Surf. Sci. 416, 68 (1998).
[37] Binary Alloy Phase Diagram (2nd ed.), T. B. Massalski et al., 1739-1744, ASM International, (1990).
[38] 陳恭、劉伊郎,物理雙月刊,廿二卷六期,592(2000年12月)
[39] 黃迪靖、陳駿、張春富、吳文斌、鐘世俊,物理雙月刊,廿二卷六期,606(2000年12月)
[40] G. Ertl and J. Küppers, Low Energy Electrons and Surface Chemistry, VCH, Weinheim (1985).
[41] J. F. ó Hanlon, A User´s Guide to Vacuum Technology, J. Wiley & Sons inc., New York (1989).
[42] 鄭文源,私立東海大學碩士論文 (2004).
[43] R. Lawrence Comstock, “Introduction to magnetism and magnetic recording”, John Wiley & Sons, New York (1999).
[44] 郭明憲,國立台灣師範大學碩士論文 (2007)
[45] J. A. C. Bland, B. Heinrich(Eds), “Ultrathin Magnetic Structures Ⅰ”, Springer-Verlag, Berlin, 40 (1994).
[46] F. J. A. den Broeder, W. Hoving and P. J. H. Bloemen, J. Magn. Magn. Mater. 93, 562 (1991).
[47] D. Repetto, T. Y. Lee, S. Rusponi, J. Honolka, K. Kuhnke, V. Sessi, U. Starke, H. Brune, P. Gambardella, C. Carbone, A. Enders, and K. Kern, Phys Rev B 74, 054408 (2006).
[48] 陳裕善,國立中正大學碩士論文(2005)
[49] M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder and J. J. de Vries, Rep. Prog. Phys. 59 (1996).
[50] A. Aharoni, “Introduction to the Theory of Ferromagnetism”, Clareddon, Oxford, (1996) ,Chap. 5.
[51] P. Bruno, Phys Rev B 39, 865 (1984)
[52] M. Wuttig and X. Liu, “Ultrathin metal films”, Springer, Berlin, 82 (2004).
[53] 曾筱嵐,國立台灣師範大學碩士論文 (2002)
[54] J. D. Jackson, Classical Electro-dynamics, John Wiley & Sons, New York, 3rd ed. (1999).
[55] D. L. Walters and C. P. Bhalla, Phys. Rev, A3, 1919 (1971).
[56] Lawrence E. Davis, Noel C. MacDonald, Paul W. Palmberg, Gerald E. Riach and Roland E. Weber, “Handbook of Auger electron spectroscopy”, Perkin-Elmer (1978).
[57] D. Briggs and M. P. Seah, “Practical Surface Analysis 2nd “ , John Wiley & Sons, Chichester (1990).
[58] M. P. Seah, J. Vac. Sci. Technol., 17, 16 (1980)
[59] 何淙潤,國立台灣師範大學碩士論文(2007)
[60] 蔡志申,物理雙月刊,廿五卷五期,605 (2003年10月).
[61] 盧志權,儀器總覽—表面分析儀器,50 (1998)
[62] M. Mansuripur, “The Physical Principles of Magneto-Optical Recording”, Cambridge University Press, London, (1998), Chap. 6
[63] Z. Q. Qiu, J. Pearson and S.D. Bader, Phys. Rev. B. 45, 7211 (1992)
[64] 許宏彰,國立台灣師範大學碩士論文(2007)
[65] R. J. D. Tilley, “Understanding Solids: The Science of Materials”, John Wiley and Sons, chap. 4, Chichester, (2004), chap. 4.
[66] M. Ritter, W. Ranke, and W. Weiss, Phys. Rev. B 57, 7240 (1998).
[67] Y.J. Chen, H.Y. Ho, C.C. Tseng and C.S. Shern, Surf. Sci., 601, 4334 (2007).
[68] 張皓淳,國立台灣師範大學碩士論文(2009)
[69] S. H. Gee, Y. K. Hong, J. C. Sur, D. W. Erickson, M. H. Park, and F. Jeffers, IEEE Trans. Magn. 40, 2691 (2004).
[70] Shouheng Sun, C.B. Murray, Dieter Weller, Liesl Folks and Andreas Moser, Science 287, 1989 (2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top