跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 20:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪柏育
研究生(外文):Po-Yu Hung
論文名稱:發光性二氧化鈦之特性分析與太陽能電池之應用
論文名稱(外文):Investigation of Luminescent Titanium Dioxide and Application on Sensitized Solar Cells
指導教授:胡淑芬胡淑芬引用關係
指導教授(外文):Shu-Fen Hu
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:146
中文關鍵詞:二氧化鈦染料敏化太陽能電池
外文關鍵詞:Titanium dioxidesolar cell
相關次數:
  • 被引用被引用:3
  • 點閱點閱:470
  • 評分評分:
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
染料敏化太陽能電池 (Dye-Sensitized Solar Cell, DSSC) 目前於世界各國研究仍屬開發階段,其光電轉換效能與商用矽晶太陽能電池相較仍有差距,但因其具備製作簡單、成本低、可撓性 (flexible) 及易製成大面積之產品等商業化優勢,故將成為下階段太陽能新能源急切發展之技術。針對DSSC之研究,主要針對四項組成元件:工作電極、染料、電解質及反電極,探討不同材料對於效率之影響。其中工作電極多屬半導體奈米薄膜如:二氧化鈦 (TiO2) 或氧化鋅 (ZnO)等,已存在多數研究其形貌結構與塗佈方式對於電池效率之影響。而近年來TiO2 摻雜稀土金屬元素之研究,多數僅只探討其發光及觸媒特性,卻未有應用於敏化太陽能電池工作電極之研究。
本研究將以不同二氧化鈦前趨物及凝膠溶膠法、水熱法合成 TiO2 摻雜 Eu 粉體。主要內容探討 Eu 摻雜對於晶體成長及晶相生成之影響,並討論 Eu3+ 為發光中心引起之特殊發光特性及機制,且 Eu3+之摻雜對於 TiO2 吸收光譜及電子組態之影響也將於文中驗證。由於染料 Black dye 於紅光之特殊吸光特性,本研究將 TiO2: Eu3+ 應用於工作電池以增加染料對於太陽光之利用,且利用TiO2: Eu3+之特殊能階性質,設計雙層工作電極結構電池以增加光電流及電壓,進而提高電池效率,並以硒化鎘 (CdSe) 量子點取代染料 Black dye作為敏化物,觀察其光電特性。於本研究中針對 TiO2: Eu3+ 將進行材料結構鑑定及光譜特性分析,並針對敏化太陽能電池測量其光電特性及理論參數精算。
第一章 緒論 1
1.1前言 1
1.2 太陽能電池簡介 2
1.3 染料敏化太陽能電池 6
1.3.1 工作原理 6
1.3.2 染料敏化太陽能電池各部分介紹 8
1.3.2.1 奈米結晶多孔膜電極 (nanocrystalline porous electrode) 8
1.3.2.2 染料(dye) 11
1.3.2.3 電解液(electrolyte) 14
1.3.2.4 相對電極(counter electrode) 16
1.3.3 染料敏化太陽能電池之文獻回顧與發展現況 16
1.4 二氧化鈦摻雜元素材料之研究 18
1.4.1 TiO2:Eu粉體發光特性說明 20
1.4.1.1主體晶格(Host) 20
1.4.1.2 活化劑(Activator) 22
1.5 研究動機與目的 23
第二章 實驗步驟與儀器分析方法 25
2.1 化學藥品 25
2.2合成方法 26
2.2.1溶膠凝膠法 (Micelle and sol - gel) 26
2.2.2 水熱法 (Hydrothermal) 27
2.3實驗流程 28
2.3.1 TPT[鈦酸四丁酯;Ti(OC4H9)4 ;Tetrabutyl titanate]系列 28
2.3.2 P25(Degussa P25 TiO2)系列 29
2.4 樣品鑑定分析 30
2.4.1 粉末X-光繞射儀(X-ray diffraction; XRD) 31
2.4.1.1 X-光繞射工作原理 31
2.4.1.2 XRD實驗儀器 34
2.4.1.3 結構精算 35
2.4.2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 38
2.4.3 穿透式電子顯微鏡(Transmission Electron Microscopy,TEM) 39
2.4.4 比表面積分析儀(Accelerated surface area and porosimetry ,ASAP) 40
2.4.5 光激發光譜儀(Photoluminescence; PL) 42
2.4.6 拉曼散射光譜儀 (Micro Raman Scattering Spectrometer) 45
2.4.7 紫外可見光擴散式反射光譜(UV-Vis diffuse reflectance spectra; UV-Vis DRS) 46
2.4.7.1 固態粉體之吸收光譜 46
2.4.8 X射線光電子能譜儀( X-ray Photoelectron Spectroscopy,XPS ) 48
2.4.9 X光吸收光譜 (X-ray Absorption Spectroscopy ; XAS) 49
2.4.9.1 X光吸收近吸收邊緣結構 (X-ray Absorption Near-Edge Structure;XANES) 50
2.5 染料敏化太陽能電池之組裝與特性分析 51
2.5.1工作電極漿料配製 51
2.5.2導電玻璃清洗 51
2.5.3電池組裝與特性測試 51
2.5.4染料敏化太陽能電池性能測試 54
2.5.4.1電流電壓效率曲線(I-V curve)量測 54
2.5.4.2 入射單色光之光電轉換效率量測(incident photon to current convers-ion efficiency;IPCE) 56
2.5.4.3電化學阻抗分析(Electrochemical impedance spectroscopy, EIS) 57
2.6量子點敏化太陽能電池之組裝 62
2.6.1硒化鎘 (CdSe) 量子點之製備 62
2.6.2硒化鎘 (CdSe) 量子點之改質 (Ligand exchange) 64
2.6.3量子點敏化電池之組裝 66
第三章 結果與討論 67
3.1 TiO2:Eu3+ 材料結構鑑定分析 68
3.1.1 晶體結構分析 68
3.1.1.1 TiO2:Eu3+ (TBT系列) XRD分析 70
3.1.1.2 TiO2:Eu3+ (P25系列) 74
3.1.2 晶體表面形貌分析 79
3.1.2.1 SEM 與TEM粉體形貌分析 79
3.1.2.2氮氣等溫吸附與脫附分析(Brunauer -Emmett-Teller;BET) 83
3.1.2.2.1 TBT系列粉體BET分析 83
3.1.2.2.2 P25系列粉體BET分析 86
3.2 TiO2:Eu3+ 粉體光譜特性分析 88
3.2.1.1光激發光譜分析(PL) 88
3.2.1.2臨界距離與能量轉移機制 94
3.2.2拉曼散射光譜分析 (Raman scattering spectrum) 95
3.2.2.1 TBT系列粉體拉曼散射光譜分析 96
3.2.2.2 P25系列樣品拉曼散射光譜分析 98
3.2.3紫外-可見光擴散式反射光譜分析(UV-Vis DRS) 100
3.2.3.1 TBT系列粉體紫外-可見光擴散式反射光譜分析 100
3.2.3.2 P25系列粉體紫外-可見光擴散式反射光譜分析 104
3.2.4 X射線光電子能譜儀(XPS) 106
3.2.5 X-光吸收光譜(XAS) 113
3.3 Ti1-xO2:Eux3+粉體於染料敏化太陽能電池之應用研究 117
3.3.1 單層工作電極電池效率量測 117
3.3.2 雙層工作電極結構 121
3.3.2.1雙層工作電極結構電池製作說明 122
3.3.2.2電池效率量測 123
3.3.2.2雙層工作電極結構電池入射單色光子-電子轉化效率(IPCE)量測 128
圖3.52 Eu0.03-TBT/0-TBT電池吸附與未吸附染料工作電極之激發與放射光譜 130
3.3.2.3雙層工作電極結構電池電化學阻抗(EIS)量測 130
3.3.3 CdSe敏化雙層工作電極結構電池光電特性分析 134
第四章 結論 136
參考文獻 138
1. 許志偉, 陳宏仁, 林怡君 and 王立義, 有機/無機太陽能電池之現況發展, 化工, 第52卷, 第2期, 49-58, 民94.
2. A.J. McEvoy and M. Gritzel, Sol. Energ. Mat. Sol. C, 1994, 32, 3, 221.
3. A. Hagfeldt, B. Didriksson, T. Palmquist, H. Lindström, S. Södergren, H. Rensmo and S.E. Lindquist, Sol. Energ. Mat. Sol. C, 1994, 31, 481.
4. B. O’Regan and M. Grätzel, Nature, 1991, 353, 737.
5. M. Grätzel, Nature, 2001, 414, 338.
6. 黃建昇, 結晶矽太陽電池發展近況, 工業材料雜誌, 第203期, 150, 民92.
7. http://cdnet.stpi.org.tw/techroom/market/energy/energy022.htm, 國家實驗研究院科技政策研究與資訊中心(Science & Technology Policy Research and Information Center,STPI).
8. M. Grätzel, Phil. Trans. R. Soc. A, 2007, 365, 993.
9. X. Chen and S.S. Mao, Chem. Rev, 2007, 107, 2891.
10. D. Cahen, G. Hodes, M. Grätzel, J.F. Guillemoles and I. Riess, J.
Phys. Chem. B, 2000, 104, 2053.
11. D. Matthews, P. Infelta and M. Grätzel, Sol. Energ. Mat. Sol. C, 1996, 44, 119.
12. M. Grätzel, J. Photochem. Photobio. A, 2004, 164, 3.
13. T.N. Rao and L.J. Bahadur, J. Electrochem. Soc, 1997, 144, 179.
14. A.B. Kashyout, M. Soliman and M. Fathy, Mater. Chem. Phys, 2005, 90, 230.
15. P. Guo and M.A. Aegerter, Thin Solid Films, 1999, 351, 290.
16. K. Sayama, H. Sugihara and H. Arakawa, Chem. Mater, 1998, 10, 3825.
17. B.V. Bergeron, A. Marton, G. Oskam and G.J. Meyer, J. Phys. Chem. B, 2005, 109, 793.
18. S. Chappel and A. Zaban, Sol. Energ. Mat. Sol. C, 2002, 71, 141.
19. K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara and H. Arakawa, Sol. Energ. Mat. Sol. C, 2000, 115, 64.
20. B. Tan, E. Toman, Y. Li and Y.Y. Wu, J. Am. Chem. Soc, 2007, 129, 463.
21. C.J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V.
Shklover and M. Grätzel, J. Am. Ceram. Soc, 1997, 80, 3157.
22. K. Kalyanasundaram and M. Grätzel, Coord. Chem. rev, 1998, 177, 347.
23. N.G. Park, J.V.D. Lagemaat and A.J. Frank, J. Phys. Chem. B,
2000, 104, 989.
24. M.K. Nazeeruddin, A. Kay, I. Rodicio, R.H. Baker, E. Müller, P. Liska, N. Vlachopoulos and M. Grätzel, J. Am. Chem. Soc, 1993, 115, 6382.
25. G. P. Smestad and M. Grätzel, J. Chem. Educ, 1998, 75, 752.
26. 劉茂煌﹐奈米光電池﹐工業材料雜誌, 2003﹐203 期, 民93.
27. M.K. Nazeeruddin, S.M. Zakeeruddi, R.H. Baker, M. Jirouse, P. Lisk, N. Vlachopoulos, V. Shklover, C.H. Fischer and M. Grätzel﹐Inog. Chem, 1999﹐38﹐6298.
28. K.S. Finnie, J.R. Bartlett and J.L. Woolfrey, Langmuir, 1998, 14, 2744.
29. C. Bauer, G. Boschloo, E. Mukhtar and A. Hagfeldt﹐J. Phys.Cem. B, 2002, 106, 12693.
30. C.G. Garcia, N.Y.M. Iha, R. Argazzi and C.A Bignozzi, Inorg. Chem, 1994, 33, 5741.
31. M.K. Nazeeruddin, M. Amirnasr, P. Comte, J.R. Mackay, A.J. McQuillan, R. Houriet and M. Gratzel, Langmuir, 2000, 16, 8525.
32. M.K. Nazeeruddin, P. Péchy, T. Renouard, S.M. Zakeeruddin, R. H. Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G.B. Deacon, C.A. Bignozzi and M. Grätzel, J. Am. Chem. Soc, 2001, 123, 1613.
33. J. Hagaen, W. Schaffrath, P. Otschik, R. Fink, A. Bacher, H.W. Schmidt and D. Haarer, Synthetic. Met, 1997, 89, 215.
34. N. Papageorgiou, W.F. Maier and M. Grätzel, J. Electrochem. Soc, 1997, 144, 876.
35. A. Kay and M. Grätzel, Sol. Energ. Mat. Sol. C, 1996, 44, 99.
36. S. Chen, S.K. Deb and H. Witzke, U.S Patent, 1978, 4,080,488, March 21.
37. M. Grätzel and K. Kalyanasundaram, Curr. SCi, 1994, 66, 706.
38. M.K. Nazeeruddin, A. Kay, I. Rodicio, R, Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos and M. Grätzel, J. Am. Chem. Soc, 1993, 115, 6382.
39. M. Grätzel, AIP Conf. Proc, 1997, 404, 119.
40. M. Grätzel, J. Photo. Photobio. A: Chem, 2004, 164, 3.
41. L. Han, Y. Chiba and A. Islam, 16th International Conference of Photochemical Conversion and Solar Sstorage. Uppsala, Sweden, 2006.
42. Y. Chiba, A. Islam and Y. Watanabe, J. Appl. Phys, 2006, 45, 638.
43. M.K. Nazeeruddin, F.D. Angelis and S. Fantacci, J. Am. Chem. Soc, 2005, 127, 16835.
44. J.M. Kroon, N.J. Bakker, H.J.P. Smit, P. Liska, K.R. Thampi, P. Wang, S.M. Zakeeruddin, M. Gratzel, A. Hinsch, S. Hore, U. Wurfel, R. Sastrawan, J.R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien and G.E. Tulloch, Prog. Photovolt: Res. Appl.
45. H. Arakawa, T. Yamaguchi and A. Takeuchi, 16th International Conference of Photochemical Conversion and Solar Storage, Uppsala, Sweden, 2006. W42P210.
46. M. Spath, J.V. Roosmalen and P. Sommeling, 3rd WCPEC. Osaka , Japan, 2003.
47. H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature, 1976, 261, 402.
48. P.M. Sommeling, 2nd WCPEC, Vienna, 1998.
49. C.J. Barbe, J. Am. Cera. Soc, 1997, 80, 3157.
50. K. Tennakone, J. Phys. D: Appl. Phys, 1998, 31, 1492.
51. M.K. Nazeeruddin, P. Pĕchy and M. Grätzel, Chem. Comm, 1997, 36, 1705,
52. K. Hara, Chem. Comm, 2001, 68, 569.
53. 角野 裕康, 村井 伸次, 御子柴 智, 東芝レビュー, 2001, 56, 7.
54. A. Hagfeldt, Nano Letters, 2001, 1, 97.
55. W. Kubo, Chem. Comm, 2002, 39, 374.
56. 原 浩二郎, AIST Today, 2002, 12, 14.
57. L. Vlachopouios, J. Am. Chem. Soc, 1988, 110, 1216.
58. V. Vamathevan, H. Tse, R. Amala, G. Lowb and S. McEvoy, Catalysis Today, 2002, 68, 201.
59. M.I. Litter and J.A. Navio, J. Photo. Photobio. A: Chem, 1996, 98, 171.
60. J. Yu, H. Yu, C.H. Ao, S.C. Lee, J.C. Yu and W. Ho, Thin Solid Films, 1999, 496, 273.
61. W. Li, Y. Wang, H. Lin, S.I. Shah, C.P. Huang, D.J. Doren, S.A. Rykov, J.G. Chen and M.A. Barteau, Appl. Phys. Lett, 2003, 83, 20.
62. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 2001, 293, 269.
63. C. Jia, E. Xie, A. Peng, R. Jiang, F. Ye, H. Lin and T. Xu, Thin Solid Films, 2006, 496, 555.
64. M. Saif and M.S.A. Abdel-Mottaleb, Inorg. Chem. Acta, 2007, 360, 2863.
65. 湯友聖, 台灣師範大學碩士論文, 臺北, 民97.
66. R.C. Ropp, Luminescence and the Solid State, Elservier, Amsterdam, 2004.
67. H. Dieke and R.A. Satten, Am. J. Phys, 1970, 38, 399.
68. http://cai.wit.edu.cn/mse/liuyu2006ppt/liuX-ray.ppt.
69. A.R. West, Basic Solid State Chemistry, John Wiley & Sons, Singapore, 1991.
70. 吳泰伯 and 許樹恩, X-光繞射原理與材料結構分析, 國科會精儀中心, 台北, 民82.
71. http://www.ndhu.edu.tw/~nano/labtext/93_Ma_II_v2.pdf.
72. 林群哲, 台灣大學化學所碩士論文, 臺北, 民96.
73. 賴泓均, 台灣大學化學所碩士論文, 臺北, 民95.
74. S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin and M. Grätzel, Thin Solid Films, 2008, 516, 4613.
75. H. Kusama , M. Kurashige, K. Sayama, M. Yanagida and Hideki. Sugihara, J. Photochem. Photobio. A, 2007, 189, 100.
76. 蕭光宏, 台灣大學化學所碩士論文, 臺北, 民97.
77. Y. Yoshida, S. Tokashiki, K. Kubota, R. Shiratuchi, Y. Yamaguchi, M. Kono and S. Hayase, Sol. Energ. Mat. Sol. C, 2008, 92, 646.
78. J.J. Wu, G.R. Chen, H.H. Yang, C.H. Ku and J.Y. Lai, Appl. Phys. Lett, 2007, 90, 213109.
79. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata and S. Isoda, J. Phys. Chem. B, 2006, 110, 13872.
80. J. Lin and J.C. Yu, J. Photochem. Photobiol. A: Chem, 1998, 116, 63.
81. T. Lindgren, J.M. Mwabora, E. Avendano, J. Jonsson, A. Hoel, C.G. Granqvist and S.E. Lindquist, J. Phys. Chem. B, 2003, 107, 5709.
82. H. Tang, H. Berger, P.E. Schimid, F. Levy and G. Burri, Solid. State. Commun, 1993, 87, 847.
83. G. Oskam, A. Nellore, R.L. Penn and P.C. Searson, J. Phys. Chem. B, 2003, 107, 1734.
84. M.A. Anderson, M.J. Gieselmann, Q. Xu, J. Membr. Sci, 1988, 39, 243.
85. P. Ganguly, N. Shah, M. Phadke, V. Ramaswamy, I.S. Mulla, Phys. Rev. B, 1993, 47, 991.
86. J.H. Li, W.L. Kang, W.H. Yan, Y.H. Guo, H.F. Gao and Z.H. Liu, Acta. Phys. Chim. Sin, 2008, 24, 1030.
87. N.G. Park, J.V.D. Lagemaat and A.J. Frank, J. Phys. Chem. B, 2000, 104, 8989.
88. R.A. Spurr and H. Myers, Anal. Chem, 1957, 29, 760.
89. S. Yin, H. Yamaki, M. Komatsu, Q Zhang, J Wang, Q. Tang, F. Saito and T. Sato, J. Mater. Chem, 2003, 13, 2996.
90. E. Setiawati and K. Kawano, J. Alloy. Compd, 2008, 451, 293.
91. B. Zou, L. Xiao, T. Li, J. Zhao, Z. Lai and S. Gu, Appl. Phys. Lett, 1991, 59, 1826.
92. J. Yang, Z.W. Quan, D.Y. Kong, X.M. Liu and J. Lin, Cryst. Growth. Des, 2007, 7, 730.
93. T. Hirai and Y. Kondo, J. Phys. Chem. C, 2007, 111, 168.
94. S. Yan, J. Zhang, X. Zhang, S. Lu, X. Ren, Z. Nie and X. Wang, J. Phys. Chem. C, 2007, 111, 13256.
95. G. Blasse and B.C. Grabmaier, Luminescence Materials, Chap. 9, 186.
96. T. Miyakawa and D. L. Dexter, Phys. Rev. B, 1970, 1, 2961.
97. K.L. Frindell, M.H. Bartl, M.R. Robinson, G.C. Bazan, A. Popitsch and G.D. Stucky, J. Solid. State. Chem, 2003, 172, 81.
98. D.L. Dexter, J.H. Schulman, J. Chem. Phys, 1954, 22, 1063.
99. T. Blasse, G. Philips Res. Rep, 1969, 24, 131.
100. L. Ozawa and P.M. Jaffe, J. Electrochem. Soc, 1971, 118, 1678.
101. Q.Z. Wang, J. Tian, X.H. Yang and X. Gao, J. Chin. Lumin, 1995, 16, 57.
102. Y.H. Zhang, C.K. Chan, J. Porter and W. Guo, J. Mater. Res, 1998, 13, 2602.
103. B.D. Yao, Y.F. Chan, X.Y. Zhang, W.F. Zhang, Z.Y. Yang and N. Wang, Appl. Phys. Lett, 1998, 82, 281.
104. D. Bersani, P.P. Lottic and X.Z. Ding, Appl . Phys. Lett, 1998, 72, 1.
105. Y.L. Li and T. Ishigaki, J. Phys. Chem. B, 2004, 108, 15536.
106. J.C. Parker, R.W. Siegel, J. Mater. Res.1990, 5, 1246.
107. H.C. Choi, Y.M. Jung and S.B. Kim, Vib. Spectrosc, 2005, 37, 33.
108. J.G Li, X. Wang, K. Watanabe and T. Ishigaki, J. Phys. Chem. B, 2006, 110, 1121.
109. T. Sreethawong, Y. Suzuki, S. Yoshikawa, Int J Hydrogen Energ, 2005, 30, 1053.
110. M. Saif and A. Mottaleb, Inorg. Chem. Acta, 2007, 360, 2863.
111. S. Rengaraj, X.Z. Li, P.A. Tanner, Z.F. Pan and G.K.H. Pang, J. Mol. Catal. A: Chem, 2005, 247, 36.
112. A.B. Murphy, Appl. Opt, 2007, 46, 3133.
113. P. Kubelka, J. Opt. Soc. Am, 1948, 28, 448.
114. D.G. Barton, M. Shtein, R.D. Wilson, S.L. Soled and E. Iglesia, J. Phys. Chem. B, 1999, 103, 630.
115. P.A. Tanner, K.L. Wong and Y. Liang, Chem. Phys. Lett, 2004, 399, 15.
116. T. Umebayashi, T. Yamaki, H. Itoh and K.J. Asai, Phys. Chem. Solid, 2002, 63, 1909.
117. S. Rengaraj, X.Z. Li, P.A. Tanner, Z.F. Pan and G.K.H. Pang, J. Mol. Catal. A: Chem, 2006, 247, 36.
118. X. Lai, Q. Guo, B.K. Min and D.W. Goodman, Surf. Sci, 2001, 487, 1.
119. F.M. Liu, T.M. Wang, J.Q. Li, C. Wang, S.K. Zheng and M. Duan, J. Magn. Magn. Mater, 2002, 251, 245.
120. W. Gopel, Surf. Sci, 1984, 139, 333.
121. A.G. Thomas, W.R. Flavell, A.K. Mallick, A.R. Kumarasinghe, D.Tsoutsou, N. Khan, C. Chatwin, S. Rayner and G.C. Smith, Phys. Rev. B, 2007, 75, 035105.
122. X. Wang, J.G. Li, H. Kamiyama, M. Katada, N. Ohashi, Y. Moriyoshi and T. Ishigaki, J. Am. Chem. Soc, 2005, 127, 10982.
123. D. Vogtender, R. Poducky, J. Redinger, E.L.D. Habenstreit, W. Habenstreit and U. Diebold, Phys. Rev. B, 2002, 65, 125411.
124. M. Durr, S. Rosselli, A. Yasuda and G. Nelles, J. Phys. Chem. B, 2006, 110, 21899.
125. C. Kim, K.S. Kim, H.Y. Kim and Y.S. Han, J. Mater. Chem, 2008, 18, 5809.
126. I. Robel, M. Kuno and P.V. Kamat, J. Am. Chem. Soc, 2007, 129, 4136.
127. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata and S. Isoda, J. Phys. Chem. B, 2006, 110, 13872.
128. W. Yu, L. Qu, W. Guo and X. Peng, Chem. Mater, 2003, 15, 285.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top