|
[1] T. Markvart, Solar Electricity. Wiley, 2003. [2] 林明獻,太陽電池技術入門,全華圖書股份有限公司,2007年10月. [3] M.A. Green, J. Zhao, A. Wang, and S. R. Wenham, "Very High Efficiency Silicon Solar Cells—Science and Technology", IEEE Transactions on electron device, Vol.3, 1999. [4] M. A. Green, K. Emery, Y. Hishikawa and W.Warta, "Solar cell efficiency tables (version 33)", Progress in Photovoltaics: Research and Applications, Vol. 17, pp.85-94, 2009. [5] A. W. Blakers and M. A. Green, "20% efficiency silicon solar cells", Applied Physics Letter, Vol. 48, No. 3, pp. 215-217, 1986. [6] R. R. King, R. A. Sinton, and R. M. Swanson, "Front and back surface fields for point-contact solar cells " ,IEEE, pp. 538-544, 1988. [7] A. Metz and R. Hezel "Record efficiencies above 21% for MIS-contacted diffused junction silicon solar cells ",IEEE, pp. 283-286, 1997. [8] J. Zhao, A. Wang and M. A. Green, "24.5% Efficiency silicon PERT Cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates ", Progress in Photovoltaics: Research and Applications, Vol. 7, pp. 471-474, 1999. [9] J. Zhao, A. Wang, P. P. Altermatt, and M. A. Green, "High efficiency PERT cell on N-type silicon substrates", IEEE, pp. 218-221, 2002. [10] Rudolf hezel, "High-efficiency OECO Czochralski- silicon solar cells for mass production", Solar Energy Materials Energy & Solar Cells, Vol. 74, pp. 25-33, 2002. [11] R. Hezel, "Novel back contact silicon solar cells designed for very high efficiencies and low-cost mass production ", IEEE, pp. 114-117, 2002. [12] J.W. Muller, A. Merkle and R. Hezel, "Self-aligning, industrially feasible back contacted silicon solar cells with efficiencies >18 %", FVS PV-UNI-NETZ, Workshop, pp. 141-145, 2003. [13] M. Tanaka, S. Okamoto, S. Tsuge and S. Kiyama "Development of HIT solar cells with more than 21% conversion efficiency and commercialization of highest performance HIT modules", 3rd World Conference on Photovoltaic Energy Conversion, pp. 955-958, 2003. [14] S. W. Glunz, E. Schneiderlöchner, D. Kray, A. Grohe, M. Hermle, H. Kampwerth, R. Preu, and G. Willeke "Laser-fired contact silicon solar cells on p-and n- substrates", 19th European Photovoltaic Solar Energy Conference, pp. 408-411, 2004. [15] O. Schultz, S. W. Glunz and G. P. Willeke "Multicrystalline silicon solar cells exceeding 20% efficiency", Progress in Photovoltaics: Research Application, Vol. 12, pp. 553-558, 2004. [16] E.T. Franklin, A. Blakers, K. Weber and V. Everett "20% efficient sliver cells fabricated with a simplified processing sequence", ANZSES, pp. 1-6, 2006. [17] M. Hofmann, S. Janz, C. Schmidt, S. Kambor, D. Suwito, N. Kohn, J. Rentsch, R. Preu and S. W. Glunz "Recent developments in rear-surface passivation at Fraunhofer ISE", Solar Energy materials & solar cells, pp.1074- 1078, 2009. [18] F. Granek, M. Hermle, D. M. Huljic, O. S. Wittmann and S. W. Glunz "Enhanced lateral current transport via the front N+ diffused layer of N-type high-efficiency back-junction back-contact silicon solar cells", Prog. in Photovolataics: Res. Appl., Vol. 17, pp. 47-56, 2009. [19] N. P. Harder, S. Hermann, A. Merkle, T. Neubert, T. Brendemuhl, P. Engelhart, R. Meyer and R. brendel "Laser-processed high-efficiency silicon RISE-EWT solar cells and characterisation", Physica Status Solidi C, pp.736-743, 2009. [20] V. Y. Yerokhova, R. Hezelb, M. Lipinskic, R. Ciachc, H. Nagelb, A. Mylyanycha, and P. Panekc, "Cost- effective methods of texturing for silicon solar cells", Solar Energy Material and Solar Cells, Vol. 72, pp. 291-298, 2002. [21] K. Tsujino and M. Matsumura, "Formation of a low reflective surface on crystalline silicon solar cells by chemical treatment using Ag electrodes as the catalyst", Solar Energy Material and Solar Cells, Vol. 90, pp. 1527-1532, 2006. [22] J. S. Yoo, I. O. Parm, U. Gangopadhyay, Kyunghae Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, "Black silicon layer formation for application in solar cells", Solar Energy Material and Solar Cells, Vol. 90, pp. 3085-3093, 2006. [23] B. C. Chakravarty, J. Tripathi, A. K. Sharma, R. Kumar, K. N. Sood, S. B. Samanta, and S. N. Singh, "The growth kinetics and optical confinement studies of porous Si for application in terrestrial Si solar cells as antireflection coating", Solar Energy Material and Solar Cells, Vol. 91, pp. 701-706, 2007. [24] C. H. Sun, W. L. Min, N. C. Lin, P. Jiang and B. Jiang "Templated fabrication of large area subwavelength antireflection gratings on silicon", Applied physics letters, Vol. 91, 231105, 2007. [25] C. T. Wu, F. H. Ko, and C. H. Lin, "Self-organized tantalum oxide nanopyramidal arrays for antireflective structure", Applied Physics Letters, Vol. 90, 171911, 2007. [26] C. H. Sun, P. Jiang and B. Jiang “broadband moth-eye antireflection coatings on silicon", Applied physics letters, Vol. 92, 061112, 2008. [27] K. Nishioka, S. Horita, K. Ohdaira, and H. Matsumura, "Antireflection subwavelength structure of silicon surface formed by wet process using catalysis of single nano-sized gold particle", Solar Energy Material and Solar Cells, Vol. 92, pp. 919-922, 2008. [28] M. D. B. Charlton, H. W. Lau, and G. J. Parker, "High aspect ratio photo-assisted electro-chemical etching of silicon and its application for the fabrication of quantum wires and photonic band structures", IEE Colloquium on Microengineering Applications in Optoelectronics, pp. 1-9, 1996. [29] A. Satoh, "Formation of through-holes on silicon wafer by optical excitation electropolishing method", Japanese Journal of Applied Physics, Vol. 39, pp. 378- 386, 2000. [30] V. Lehmann and H. Föll, "Formation mechanism and properties of electrochemically etched trenches in n- type silicon", Journal of the Electrochemical Society, Vol. 137, pp. 653-658, 1990. [31] V. Lehmann and U. Grüning, "The limits of macropore array fabrication", Thin Solid Films, Vol. 297, pp. 13- 17, 1997. [32] V. Lehmann, "The physics of macropore formation in low- doped n-type silicon", Journal of the Electrochemical Society, Vol. 140, pp. 2836-2843, 1993. [33] V. Lehmann, "Porous silicon formation and other photo- electrochemical effects at silicon electrodes anodized in hydrofluoric acid", Applied Surface Science, Vol. 106, pp. 402-405, 1996. [34] V. Lehmann, "Porous silicon-a new material for MEMS", Proc. of Micro Electro Mechanical System Workshop, California, USA, pp. 1-6, 1996. [35] S. O. Kasap, Optoelectronics and photonics, Canada: Prentice Hall, 2001. [36] A. Uhir, "Electrolytic shaping of germanium and silicon", Bell System Technical Journal, Vol. 35, pp. 333-347, 1956. [37] S. Rowson, A. Chelnokov, and J. M. Lourtioz, "Two- dimensional photonic crystals in macroporous silicon: From mid-infrared (10 um) to telecommunication wavelengths (1.3u-1.5 um)", Journal of Lightwave Technology, Vol. 17, pp. 1989-1995, 1999. [38] U. Grüninga, V. Lehmann, S. Ottow, and K.Busch, "Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 µm", Applied Physics Letters, Vol. 68, 747, 1996. [39] F. Müller, A. Birner, U. Gösele, V. Lehmann, S. Ottow, and H. Föll, "Structuring of macroporous silicon for applications as photonic crystals", Journal of Porous Material, 201, 2000. [40] P. Roussel, V. Lysenko, B. Remaki, G. Delhomme, A. Dittmar, and D. Barbier, "Thick oxidised porous silicon layers for the design of a biomedical thermal conductivity microsensor", Sensor and Actuators A, Vol. 74, pp. 100-103, 1999. [41] M. B. Ali, R. Mlika, H. B. Ouada, R. M’ghaïeth, and H. Maâref, "Porous silicon as substrate for ion sensors", Sensor and Actuators A, Vol. 74, pp. 123- 125, 1999. [42] S. Bastide, A. Albu-Yaron, S. Strehlke, and C. Lévy- Clément, "Formation and characterization of porous silicon layers for application in multicrystalline silicon solar cells", Solar Energy Materials & Solar Cells, Vol. 57, pp.393-417, 1999. [43] H. Ohji, S. Izuo, P. J. French, and K. Tsutsumi, "Pillar structures with a sub-micron space fabricated by macroporous-based micromachining", Sensor and Actuators A, Vol. 97-98, pp. 744-748, 2002. [44] S. Izuo, H. Ohji, and P. J. French, "A novel electrochemical etching technique for n-type silicon", Sensors and Actuators A, Vol. 97, pp. 720-724, 2002. [45] H. Ohji, P.J. French, and K. Tsutsumi, "Fabrication of mechanical in p-type silicon using electrochemical etching", Sensors and Actuators, Vol. 82, pp. 254-258, 2000. [46] R. L. Smith and S. D. Collins, "Porous silicon formation mechanisms", Journal of Applied Physics, Vol. 71, pp. 1-22, 1992. [47] V. Lehmann and S. Ronnebeck, "The physics of macropore formation in low-doped p-type silicon", Journal of the Electrochemical Society, Vol. 146, pp. 2968-2975, 1999. [48] 吳浩青 等人, "電化學動力學", 科技圖書股份有限公司, pp. 179 183, 2001. [49] X. Badel, "Electrochemically etched pore arrays in silicon for X-ray imaging detectors", Ph.D Thesis, The Royal Institute of Technology, pp. 5-21, 2005. [50] M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew, and A. G. Cullis, "An experimental and theoretical study of the formation and microstructure of porous silicon", Journal of Crystal Growth, Vol. 73, pp. 622-636, 1985. [51] M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cullis, and J. D. Benjamin, "Microstructure and formation mechanism of porous silicon", Applied Physics Letters, Vol. 46, pp. 86-88, 1985. [52] X. G. Zhang, S. D. Collins, and R. L. Smith, "Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution", Journal of the Electrochemical Society, Vol. 136, pp. 1561-1565, 1989. [53] X. G. Zhang, "Mechanism of pore formation on n-type silicon", Journal of the Electrochemical Society, Vol. 138, pp. 3750-3756, 1991. [54] R. L. Smith, S. F. Chuang, and S. D. Collins, "A theoretical model of the formation morphologies of porous silicon", Journal of Electronic Materials, Vol. 17, pp. 533-541, 1988. [55] 劉時郡, "單晶矽太陽能電池製程改善及退火處理之研究", 崑山科技大 學電機工程學系, 碩士論文, 2007. [56] 羅嘉佑, "晶圓穿孔陣列之光輔助電化學蝕刻特性研究", 國立臺灣師範 大學機電科技學系, 碩士論文, 2008. [57] 李明承, "整合光輔助電化學穿孔蝕刻與微電鑄技術應用於微金屬柱陣 列之研製", 國立臺灣師範大學機電科技學系, 碩士論文, 2007. [58] R.E. Camacho, et al., “Carbon Nanotube Arrays for Photovoltaic Applications,” Nanomaterials for Electronic Applications, pp. 39-42, 2007. [59] http://www.pvcdrom.pveducation.org/index.html [60] http://www.udel.edu/igert/pvcdrom/APPEND/AM0AM1_5.xls [61] S. Ronnebeck, J. Carstensen, S. Ottow and H. Foll, "Crystal orientation dependence of macropore growth in n-type silicon ", Electrochemical and Solid-State Letters, Vol. 3, pp. 126-128, 1999.
|