參考文獻
[1] T. Mukai, M. Yamda and S. Nakamura, Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes, Japanese Journal of Applied Physics, Vol. 38, pp. 3976-3981(1999)
[2] 林明德、戴光佑, 照明光源與LED發展趨勢, 工業材料雜誌, 266期, pp. 80-86 (2009)[3] S. O. Kasap, Optoelectronics and photonics: principles and practices, Pearson (2001)
[4] E. F. Schubert, Light-emitting diode, Cambridge (2003)
[5] 陳建隆, 發光二極體之原理與製程, 全華圖書股份有限公司 (2008)
[6] D. Hull, Introduction to dislocations, Oxford (1975)
[7] J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang and S. J. Park, UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radio frequency sputtering, Advanced Materials, Vol. 18, pp. 2720-2724 (2006)
[8] P. X. Gao and Z. L. Wanga, Nanoarchitectures of semiconducting and piezoelectric zinc oxide, Journal of Applied Physics, Vol. 97, 044304 (2005)
[9] R. A. Swalin, Thermodynamics of Solids, John Wiley & Sons, pp. 335 (1972)
[10] S. Kohiki, M. Nishitani and T. Wada, Enhanced electrical conductivity of zinc oxide thin films by ion implantation of gallium, aluminum, and boron atoms, Journal of Applied Physics, Vol. 75, pp. 2069-2072 (2005)
[11] D. C. Reynolds, D. C. Look and B. Jogai, Optically pumped ultraviolet lasing from ZnO, Solid State Communications, Vol. 99, pp. 873-875 (1996)
[12] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt, Mechanisms behind green photoluminescence in ZnO phosphor powders, Journal of Applied Physics, Vol. 79, pp. 7983-7990 (1996)
[13] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Applied Physics Letters, Vol. 68, pp. 403-405 (1996)
[14] A. V. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh and A. Meijerink, The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation, Journal of Physical Chemistry B, Vol. 104, pp. 1715-1273 (2000)
[15] B. Lin and Z. Fu, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Applied Physics Letters, Vol. 79, pp. 943-945 (2001)
[16] P. N. Prasad, Nanophotonics, Wiley Interscience (2004)
[17] A. P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals, Journal of Physical Chemistry, Vol. 100, pp. 13226-13239 (1996)
[18] W. I. Park, G. C. Yi, M. Kim and S. J. Pennycook, Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures, Advanced Materials, Vol. 15, pp. 526-529 (2003)
[19] H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang and K. S. Chung, High-brightness light emitting diodes using dislocation-free indium gallium, Nano Letters, Vol. 4, pp. 1059-1062 (2004)
[20] S. R. Hejazi, H. R. M. Hosseini, A diffusion-controlled kinetic model for growth of Au-catalyzed ZnO nanorods: theory and experiment, Journal of Crystal Growth, Vol. 309, pp. 70-75 (2007)
[21] S. Y. Li, C. Y. Lee and T. Y. Tseng, Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process, Journal of Crystal Growth, Vol. 247, pp. 357-362 (2003)
[22] C. J. Lee, T. J. Lee, S. C. Lyu and Y. Zhang, Field emission from well-aligned zinc oxide nanowires grown at low temperature, Applied Physics Letters, Vol. 81, No. 19, pp. 3648-3650 (2002)
[23] Y. Ding, P. X. Gao and Z. L. Wang, Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: A case of Sn/ZnO, Journal of American Chemical Society, Vol. 126, pp. 2066-2072 (2004)
[24] M. S. Kumar, T. Y. Kim, J. Y. Kim, E. K. Suh and K. S. Nahm, Structural and optical properties of ZnO nanowires synthesized with different catalysts and substrate pre-treatments, Physica Status Solidi (c), Vol. 1, pp. 2554-2558 (2004)
[25] S. R. Hejazi, H. R. M. Hosseini and M. S. Ghamsari, The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vaporliquidsolid (VLS) mechanism, Journal of Alloys and Compounds, Vol. 455, pp. 353-357 (2008)
[26] J. Yang, D. Wang, L. Yang, Y. Zhang, G. Xing, J. Lang, H. Fan, M. Gaoa and Y. Wang, Effects of supply time of Ar gas current on structural properties of Au-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process, Journal of Alloys and Compounds, Vol. 450, pp. 508-511 (2008)
[27] W. Wang, C. J. Summers and Z. L. Wang, Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays, Nano Letters, Vol. 4, pp. 423-426 (2004)
[28] A. Umar, S. H. Kim, Y. S. Lee, K. S. Nahm and Y. B. Hahn, Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor-solid growth mechanism: Structural and optical properties, Journal of Crystal Growth, Vol. 282, pp. 131-136 (2005)
[29] S. N. Cha, B. G. Song, J. E. Jang, J. E. Jung, I. T. Han, J. H. Ha, J. P. Hong, D. J. Kang and J. M. Kim, Controlled growth of vertically aligned ZnO nanowires with different crystal orientation of the ZnO seed layer, Nanotechnology, Vol. 19, 235601 (2008)
[30] S. L. Mensah, V. K. Kayastha, I. N. Ivanov, D. B. Geohegan and Y. K. Yap, Formation of single crystalline ZnO nanotubes without catalysts and templates, Vol. 90, 113108 (2007)
[31] A. Umar, S. H. Lim, E. K. Suh and Y. B. Hahn, Ultraviolet-emitting javelin-like ZnO nanorods by thermal evaporation: Growth mechanism, structural and optical properties, Chemical Physics Letters, Vol. 440, pp. 110-115 (2007)
[32] Z. W. Pan, Z. R. Dai and Z. L. Wang, Nanobelts of semiconducting oxides, Science, Vol. 291, pp. 1947-1949 (2001)
[33] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, Catalytic growth of Zinc oxide nanowires by vapor transport, Advanced Materials, Vol. 13, pp. 113-116 (2001)
[34] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Roomtemperature ultraviolet nanowire nanolasers, Science, Vol. 292, pp. 1897-1899 (2001)
[35] M. Satoh, N. Tanaka, Y. Ueda, S. Ohshio and H. Saitoh, Epitaxial growth of Zinc oxide whiskers by chemical-vapor deposition under atmospheric pressure, Japan Journal of Applied Physics, Vol. 38, pp. L586-L589 (1999)
[36] J. J. Wu and S. C. Liu, Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition, Advanced Materials, Vol. 14, No. 3, pp. 215-218 (2002)
[37] H. Tang, L. Zhu, Z. Ye, H. He, Y. Zhang, M. Zhi, F. Yang, Z. Yang and B. Zhao, Synthesis of two kinds of ZnO nanostructures by vapor phase method, Materials Letters, Vol. 61, pp. 1170-1173 (2007)
[38] K. S. Kim and H. W. Kim, Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition, Physica B, Vol. 328, pp. 368-371 (2003)
[39] S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N. W. Emanetoglu and Y. Lu, Selective MOCVD growth of ZnO nanotips, IEEE Transactions on Nanotechnology, Vol. 2, No. 1, pp. 50-54 (2003)
[40] D. J. Lee, J. Y. Park, Y. S. Yun, Y. S. Hong, J. H. Moon, B. T. Lee and S. S. Kim, Comparative studies on the growth behavior of ZnO nanorods by metalorganic chemical vapor deposition depending on the type of substrates, Journal of Crystal Growth, Vol. 276, pp. 458-464 (2005)
[41] J. R. Wang, Z. Z. Ye, J. Y. Huang, Q. B. Ma, X. Q. Gu, H. P. He, L. P. Zhu and J. G. Lu, ZnMgO nanorod arrays grown by metal-organic chemical vapor deposition, Materials Letters, Vol. 62, pp. 1263-1266 (2008)
[42] X. Liu, X. Wu, H. Cao and R. P. H. Chang, Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition, Journal of Applied Physics, Vol. 95, pp. 3141-3147 (2004)
[43] M. Yan, H. T. Zhang, E. J. Widjaja and R. P. H. Chang, Self-assembly of well-aligned gallium-doped zinc oxide nanorods, Journal of Applied Physics, Vol. 94, No. 8, pp. 5240-5246 (2003)
[44] M. Guoa, C. Y. Yang, M. Zhang, Y. J. Zhang, T. Maa, X. Wang and X. D. Wang, Effects of preparing conditions on the electrodeposition of well-aligned ZnO nanorod arrays, Electrochimica Acta, Vol. 53, pp. 4633-4641 (2008)
[45] L. Xu, Q. Liao, J. Zhang, X. Ai and D. Xu, Single-crystalline ZnO nanotube arrays on conductive glass substrates by selective disolution of electrodeposited ZnO nanorods, Journal of Physical Chemistry C, Vol. 111, pp. 4549-4552 (2007)
[46] S. H. Jung, E. Oh, K. H. Lee, W. Park and S. H. Jeong, A sonochemical method for fabricating aligned ZnO nanorods, Advanced Materials, Vol. 19, pp. 749-753 (2007)
[47] L. Spanhel and M. A. Anderson, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids, Journal of the American Chemical Society, Vol. 113, pp. 2826-2833 (1991)
[48] C. Pacholski, A. Kornowski and H. Weller, Self-assembly of ZnO: from nanodots to nanorods, Angewandte Chemie International Edition, Vol. 41, pp. 1188-1191 (2002)
[49] B. Liu and H. C. Zeng, Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures, Langmuir, Vol. 20, pp. 4196-4204 (2004)
[50] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu and D. Que, Low temperature synthesis of flowerlike ZnO nanostructures by Cetyltrimethylammonium Bromide-assisted hydrothermal process, Journal of Physical Chemistry B, Vol. 108, pp. 3955-3958 (2004)
[51] L. Vayssieres, K. Keis, S. E. Lindquist and A. Hagfeldt, Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO, Journal of Physical Chemistry B, Vol. 105, pp. 3350-3352 (2001)
[52] L. Vayssieres, K. Keis, A. Hagfeldt and S. E. Lindquist, Three-dimensional array of highly oriented crystalline ZnO microtubes, Chemistry of Materials, Vol. 13, pp. 4395-4398 (2001)
[53] L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solution, Advanced Materials, Vol. 15, pp. 464-466 (2003)
[54] A. Sugunan, H. C. Warad, M. Bomanb and J. Dutta, Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine, Journal of Sol-Gel Science and Technology, Vol. 39, pp. 49-56 (2005)
[55] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally and P. Yang, Low-temperature wafer-scale production of ZnO nanowire arrays, Angewandet Chemie, Vol. 42, pp. 3031-3034 (2003)
[56] Y. Tak and K. Yong, Controlled growth of well-aligned ZnO nanorod array using a novel solution method, Journal of Physical Chemistry B, Vol. 109, pp. 19263-19269 (2005)
[57] D. Wu , M. Yanga, Z. Huang, G. Yin, X. Liao, Y. Kang, X. Chen and H. Wang, Preparation and properties of Ni-doped ZnO rod arrays from aqueous solution, Journal of Colloid and Interface Science, Vol. 330, pp. 380-385 (2009)
[58] W. I. Park and G. C. Yi, Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN, Advanced Materials, Vol. 16, pp. 87-90 (2004)
[59] M. C. Jeong, B. Y Oh, M. H. Ham and J. M. Myoung, Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes, Applied Physics Letters, Vol. 88, 202105 (2006)
[60] M. C. Jeong, B. Y. Oh, M. H. Ham and J. M. Myoung, ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diode, Small, Vol. 3, pp. 568-572 (2007)
[61] S. H. Park, S. H. Kim and S. W. Han, Growth of homoepitaxial ZnO film on ZnO nanorods and light emitting diode applications, Nanotechnology, Vol. 18, 055608 (2007)
[62] D. C. Kim, W. S. Han, H. K. Cho, B. H. Kong, and H. S. Kim, Multidimensional ZnO light-emitting diode structures grown by metal organic chemical vapor deposition on p-Si, Applied Physics Letters, Vol. 91, 231901 (2007)
[63] C. Y. Chang, F. C. Tsao, C. J. Pan and G. C. Chi, Electroluminescence from ZnO nanowire/polymer composite p-n junction, Applied Physics Letters, Vol. 88, 173503 (2006)
[64] B. Linga, X. W. Suna, J. L. Zhaoa, S. T. Tanb, Z. L. Dongc, Y. Yanga, H. Y. Yua and K. C. Qi, Electroluminescence from a n-ZnO nanorod/p-CuAlO2 heterojunction light-emitting diode, Physica E, Vol. 41 (2008)
[65] R. Konenkamp, R. C. Word and C. Schlegel, Vertical nanowire lightemitting diode, Applied Physics Letters, Vol. 85, pp. 6004-6006 (2007)
[66] H. Guoa, J.g Zhoua and Z. Lin, ZnO nanorod light-emitting diodes fabricated by electrochemical approaches, Electrochemistry Communications, Vol. 10, pp. 146-150 (2008)
[67] A. Nadarajah, R. C. Word, J. Meiss and R. Knenkamp, Flexible inorganic nanowire light-emitting diode, Nano Letters, Vol. 8, pp.534-537 (2008)
[68] K. H. Tam, A. M. C. Ng, Y. H. Leungt, A. B. Djurisic, W. K. Chan , and S. Gwo, ZnO nanorods by hydrothermal method for ZnO/GaN LEDs, IEEE, Optoelectronic and Microelectronic Materials and Devices, 2006 Conference on, pp. 109-112 (2006)
[69] H. Sun, Q. F. Zhang and J. L. Wu, Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure, Nanotechnology, Vol. 17, pp. 2271-2274 (2006)
[70] E. Lai, W. Kim and P. Yang, Vertical nanowire array-based light emitting diodes, Nano Research, Vol. 1, pp. 123-128 (2008)
[71] H. Sun, Q. Zhang, J. Zhang, T. Deng and J. Wu, Electroluminescence from ZnO nanowires with a p-ZnO film/n-ZnO nanowire homojunction, Applied Physics B: Lasers and Optics, Vol. 90, pp. 543-546 (2008)
[72] G. Xiong, J. Wilkinson, B. Mischuck, S. Tuzemen, K. B. Ucer and R. T. Williams, Control of p- and n-type conductivity in sputter deposition of undoped ZnO, Applied Physics Letters, Vol. 80, pp. 1195-1197 (2002)
[73] S. H. Jeong, J. W. Lee, S. B. Lee, J. H. Boo, Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties, Thin Solid Films, Vol. 435, pp. 78-82 (2003)
[74] T. H. Moon, M. C. Jeong, B. Y. Oh, M. H. Ham, M. H. Jeun, W. Y. Lee and J. M. Myoung, Chemical surface passivation of HfO2 films in a ZnO nanowire transistor, Nanotechnology, Vol. 17, pp. 2116-2121 (2006)
[75] H. K. Kim, T. Y. Seong, K. K. Kim, S. J. Park, Y. S. Yoon and I. Adesida, Mechanism of nonalloyed Al ohmic contacts to n-Type ZnO:Al epitaxial layer, Japanese Journal of Applied Physics, Vol. 43, pp. 976-979 (2004)
[76] K. Ip, G. T. Thalera, H. Yanga, S. Y. Hana, Y. Lia, D. P. Nortona, S. J. Peartona, S. Jang and F. Ren, Contacts to ZnO, Journal of Crystal Growth, Vol. 287, pp. 149-156 (2006)
[77] B. Liu and H. C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm, Journal of American Chemical Society, Vol. 125, pp. 4430-4431 (2003)
[78] 鄭信民、林麗娟, X光繞射應用簡介, 工業材料雜誌, 181期, pp. 100-108 (2002)[79] Y. C. Chen, C. L. Cheng, S. C. Liou and Y. F. Chen, The magnetoelectric effect in Ni–Fe alloy ZnO nanorod array composites, Nanotechnology, Vol. 19, 485709 (2008)
[80] S. H. Jeong, J. W. Lee, S. B. Lee and J. H. Boo, Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties, Thin Solid Films, Vol. 435, pp. 78-82 (2003)
[81] K. H. Kim, Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering, Journal of Applied Physics, Vol. 81, pp. 7764-7772 (1997)
[82] S. Y. Hu, Y. C. Lee, J. W. Lee, J. C. Huang, J. L. Shen and W. Water, The structural and optical properties of ZnO/Si thin films by RTA treatments, Applied Surface Science, Vol. 254, pp. 1578-1582 (2008)
[83] R. Schaffler and H. W. Schock, High mobility ZnO:Al thin film grown by reactive DC magnetron sputtering, IEEE (1993)
[84] T. Minami, H. Sato, H. Imamoto, Substrate temperature dependence of transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering, Japan Journal of Applied Physics, Vol. 31, pp. L 257-L 260 (1992)
[85] 金開勝, 氧化鋅薄膜分析與發光二極體元件製作, 中華技術學院電子工程研究所, 碩士論文 (2006)