跳到主要內容

臺灣博碩士論文加值系統

(44.211.34.178) 您好!臺灣時間:2024/11/02 23:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:艾墨
研究生(外文):Isani Amor Chan
論文名稱:台灣東北部前採礦區陰陽海近岸海域之海水對軟木軟柳珊瑚之污染與復育效應研究
論文名稱(外文):Effects of pollution and recovery on the gorgonian coral Subergorgia suberosa From a former coastal mining site, Ying-Yang Hai, in NE-Taiwan
指導教授:黃將修
指導教授(外文):Jiang-Shiou Hwang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:45
中文關鍵詞:軟木軟柳珊瑚陰陽海污染與復育
外文關鍵詞:Subergorgia suberosapollution
相關次數:
  • 被引用被引用:1
  • 點閱點閱:340
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
海岸水域之懸浮物以及其對應之微量元素與珊瑚礁之關係在世界上被廣泛的討論,台灣尤其在先前為採礦區的地區,直接與間接的毒性會由食物鍊所累積的重金屬產生。許多重金屬為珊瑚生物上所需的,但濃度超過其所能承受之門檻將會產生毒性。本實驗主要觀察陰陽海 (台灣東北角) 近岸海域受重金屬污染的海水對軟木軟柳珊瑚之影響效應。實驗將18株軟木軟柳珊瑚分別暴露在受重金屬污染之濃縮海水的實驗組以及控制組中,觀察珊瑚攝入到骨骼以及組織之重金屬,以及顯示組織切片下之細胞結構。實驗結果顯示軟木軟柳珊瑚在實驗組中濃縮之重金屬海水造成珊瑚細胞的損害而分泌黏液,組織膨脹以及造成新生的珊瑚死亡,珊瑚蟲通常會收縮且不會伸出觸手,對應於控制組的珊瑚其會伸出觸手。而實驗進行三週後珊瑚開始適應受污染的環境,珊瑚蟲開始伸出觸手且攝食豐年蝦的幼生。本實驗顯示了軟木軟柳珊瑚能夠適應相對高濃度之重金屬環境,像是銅、鋅、鈣等。
Suspended sediments in coastal waters and their corresponding trace metals are of environmental concern for coral reefs worldwide, particularly in the former mining site of Taiwan. This holds for the direct and indirect toxicity through accumulation of metals via the trophic cascade. While many heavy metals are biologically essential to coral reefs, they can become toxic if their concentrations exceed certain threshold values. In the present study we examined heavy metal concentrations from the Ying-Yang Bay, NE-Taiwan. Eighteen colonies of the Gorgonian coral Subergorgia suberosa were exposed to the heavy metal concentrated seawater in experimental tanks and control tanks. The objective of this research was to observe the effects of the contaminated water on the gorgonian coral Subergorgia suberosa. To determine what, if any detrimental effects these impurities may have on the flora and fauna of the surrounding area. To investigate the uptake of heavy metals into the tissue and skeleton, and to display the cell structure of the Subergorgia suberosa by using histopathology sectioning. Observations revealed that the heavy metal concentrated water damaged the cell structure of the Subergorgia suberosa corals that contributes to mucus secretion, tissue expansion and mortality to the juvenile corals, polyps were commonly contracted without extending their tentacles in the treatment tanks, compared to the control tanks where polyps extended their tentacles. These results indicated that during the third week of the research the corals in the treatment tanks started to adapt to the contaminated environment, by showing feeding behavior an extending their tentacles and ingesting Artemia nauplii. This experiment shows that the Subergorgia suberosa adapts to rather high levels of heavy metals concentration, such as copper, zinc, cadmium. Therefore, during week four, five, six, and seven five cm of the Subergorgia suberosa were cut to identify the level of heavy metals uptake.
Table of Contents
Abstract....................................................................................................................................... 1-2
Acknowledgements.........................................................................................................................3

Chapter1. – Introduction

1.1. – Introduction....................................................................................................................1-7
1.2 – Site description…………………………………………………………………………7-9
Chapter2. – Methods and Materials
2.1. – Sampling Methodology.................................................................................................9-12
Chapter3. – Results

3.1. – Trace metals identified in the Subergorgia suberosa…………………………………12-13
3.2. – Exposure treatment on coral behaviour ………………………………………………..13
3.3. – Tissue Necroses ……………………………………………………………………......13
3.4. – Heavy Metals contribute to Mucus Secretion ………………………………………….14
4.5. – Tissue expansion………………………………………………………...….…………..14
3.6. – Histology of S. suberosa……………………………………………………………………...14-15
Chapter4. – Discussion and Conclusion

4.1. – Discussion ………………………………………………………………………………...15-20
4.2. – Conclusion ………………………………………………………………………..….........20-22
Chapter5. - References
5.1. – References Cited................................................................................................…………..23-27

Chapter6. – Appendices
6.1. – Appendix 1...........................................................................................................................28
6.2. – Appendix 2...........................................................................................................................29
6.3. – Appendix 3………………………………………………………………………………...30
6.4. – Appendix 4………………………………………………………………………...............31
6.5. – Appendix 5………………………………………………………………………………...32
6.6. – Appendix6…………………………………………………………………………………33
6.7. – Appendix7…………………………………………………………………………………34
6.8. – Appendix8…………………………………………………………………………………35
6.9. – Appendix7…………………………………………………………………………………36
6.10. – Appendix7………………………………………………………………………………..37

LIST OF FIGURES:
Fig.1. Keelung copper site and the Subergorgia suberosa coral reef location………………14

Fig.2. Image B. displaying Keelung Copper site, Image A. displaying S. suberosa coral reef location………………………………………………………………………………………..38


Fig.3. the concentration range of the studied metals found within the S. suberosa coral samples for tank 1, 2 and 3 are indicating that there is an increase of Cu concentration in the S. suberosa as they were exposed to the water from the copper site…………………………………………30


Fig.4. the concentration range of the studied metals found within the S. suberosa coral samples for tank 1, 2 and 3 are indicating that there is an increase of Zn, concentration in the S. suberosa as they were exposed to the water from the copper site…………………………………………40


Fig.5. the concentration range of the studied metals found within the S. suberosa coral samples for tank 1, 2 and 3 are indicating that there is an increase of Cd concentration in the S. suberosa as they were exposed to the water from the copper site…………………………………………41

Fig. 6. S. suberosa coral displayed mucus secretion, tissue expansion and deterioration of tissue which was caused by the high concentration of heavy metals that was present within the coral tank environment, the recovery process was for four months…………………………...………42

Fig. 7 Histology of the S. suberosa corals in the control tank (A) reveals that the coral cell of the polyps are intact. S. suberosa corals in the experimental tanks (B, C and D) reveals that the heavy metal concentrated water damaged the cell structure of the S. suberosa corals. Recovery of the cell structure in fig.4 F-H was for four months………………………………………………43

LIST OF TABLES:
Table 1. Comparison of Australian and New Zealand Environment and Conservation Council and the safe water concentrations (μ) of the studied trace metals within the water samples from Heping Island and Ying Yang Hai…………………………………………………………….....44



Table 2. Results of repeated ANOVA testing the negative effect of heavy metal’s on the S. suberosa coral, Significance level; *Significant (p<0.05)………………………………………45
Reference
Australian and New Zealand Environment and Conservation council, (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality: Volume 2 –Aquatic Ecosystems- Rationale and Background Information.
Beck, J. W., R. L. Edwards, E. Ito, F.W. Taylor, J. Recy, F. Rougerie, P. Joannot and C. Henin, 1992. Sea-surface temperature from coral skeletal strontium calcium ratios. Science 257: 644-646.
Bastidas C. and Garcia E. (1999). Metal content on the reef coral Porites astreoides: An evaluation of river influence and 35 years of chronology. Mar poll. Bull. 38, 899-907.
Becky J. W., Edwards R. L., Ito E., Traylor F. W., Recy J., Rougerie F., Joannot P., and Henin C. (1992). Sea- Surface temperature from coral skeletal strontium calcium ratios. Science 257, 644-647.
Bellamy, J. A., McDonald, G. T., Syme, G. J. and Walker, D. H.(1999). Planning and implementing integrated catchment management. In Evaluation of integrated catchment management in a wet tropical environment, compiled by J. A. Bellamy. CSIRO Brisbane, Australia. pp 229-252.
Benson, A. A. and Summons, R. E. (1981). Arsenic accumulation in Great Barrier Reef invertebrates. Science 211, 482-483.
Berkelmans, R. and Oliver, J. K. (1999). Large-scale bleaching of corals on the Great Barrier Reef. Coral Reefs 18, 55-60.
Blake, S. G. (1996). The distribution of sediments and nutrients throughout the Whitsunday Islands inner shelf region. Unpublished report to the Great Barrier Reef.
Bryant, D., Burke, J. McManus, and M. Spalding (1998). Reefs at Risk: A Map Based Indicator of threats to the world’s Coral Reefs. United States of America: World Resources Institute.
Brown B.E. and J.C. Bythell, (2005). Perspective on Mucus Secretion. Marine Ecology Progress Series, 296: 291-309.
Brown, B.E. and L.S. Howard, (1985). Assessing the effects of stress on reef corals. Advances in Marine Biology, 22: 1-63.
Brown, B.E. (1987). Heavy Metals pollution on coral reefs. In Human Impact on Coral Reefs: Facts and Recommendation (ed. B. Savat), Antene Museum E.P. H.E. French Polynesia, pp. 119-134.
Cervino, J. M., R. L. Hayes, M. Honovich, T. J. Goreau, S. Jones and P. J. Rubec. (2003).Changes in zooxanthellae density, morphology and mitotic index in hermatypic coral and anemones exposed to cyanide. Mar. Pollut. Bull. 46:573-586.
Clark, R.B., (2001). Marine pollution Fifth Edition. New York: Oxford University Press.
Cole J.E. and Fairbanks R.G. (1990) The Southern Oscillation recorded in the oxygen isotopes of corals from Tarawa Atoll. Pale-oceanography 5, 669-689.
Fallen S. J., McCulloch M.T., van Woesik R. and Sinclair D.J. (1990). Corals at their latitudinal limits: Laser ablation trace element systematic in Porites from Shirigai Bay, Japan. Earth Planet. Sci. lett. 172, 221-238.
Glynn. P. W., A. M. Szmat, E. F. Corcoran and S. V. Cofer-Shabica. (1989). Condition of coral Reff cnidarians form the northern Florida reef tract: pesticides, heavy metals and histopathological examination. Mar. Pollut. Bull. 20(11):568-576.
Guzman, H.M., and E.M. Garcia, (2002). Mercury levels in coral reefs along the Caribbean coast of Central America. Marine Pollution Bulletin 44: 14115-1420.
Guzman, H.M., and C.E. Jimenez, (1992).Contamination of coral reefs by heavy metals along the Caribbean coast of Central America (Costa Rica and Panama). Mar. Pol.l Bull. 24: 554-561.
Hanna R.G. and Muir G.L. (1990). Red Sea corals as biomonitors of trace metal pollution. Envir. Mon. Assess. 14, 211-222.
Holsbeek, L., Siebert, U., and Joiris, C. R. (1998). Ecology and conservation of the dugong, Dugong dugon. James Cook University, Townsville.
Heinsohn, G. E., Wake, J., Marsh, H., and Spain, A. V. (1977). The dugong (Dugongdugon (Muller)) in the seagrass system. Aquaculture 12, 235-248.
Horstmann, M. and McLachlan, M. S. (1995). Heavy metals in dolphins stranded on the French
Atlantic coast. The Science of the Total Environment 217, 241-249.
Horstmann, M., Kaune, A., McLachlan, M. S., Reissinger, M., and Hutzinger, O.(1992). Temporal variability of PCDD/F concentrations in sewage sludge. Chemosphere 25, 1463-1468.
Howard. L S. and B. E. Brown. (1986). Metals in tissues and skeleton of Fungia fungites from Phuket Thailand. Mar. Poll. Bull. 17,569-570.
Howard. L S. and B. E. Brown. (1984). Heavy metals and reef corals. Mar. Biol. Ann. Rev. 22:195-210.
Inoue, M., A. Suzuki, M. Nohara, H. Kan, A. Edward, and H. Kawahata, (2004). Coral Skeletal Tin and Copper Concentrations at Pohnpei, Micronesia: Possible Index for Marine Pollution by Toxic Anti-biofouling Paints. Environmental Pollution, 129:399-407.
Jones, R., J (2007). Chemical contamination of a coral reef by the grounding. Marine Pollution Bulletin, 54: 905-11.
Kawahata, H., H. Ohta, M. Inoue, and A. Suzuki, (2004). Endocrine Disrupter Nonylphenol and Bisphenol a Contamination in Okinawa and Ishigaki Islands, Japan-Within Coral Reefs and adjacent River Mouths. Chemosphere, 55:1519-1527.
McManus. J. W., L. A. B. Menwz, K. N. Kesner-Reyes, S. G. Vergara and M. C. Ablan. (2000). Coral reef fishing and coral-algal phase shifts: implications for global reef status. J. Mar. Sci. 57: 572-578.
McCulloch M. T. and Esat T. (2000). The coral record of last interglacial sea levels and sea surface temperature. Chem. Geol. 169, 107-129.
Menza, C., kendall, C. Rogers, and J. Miller, (2007). A deep reef in deep trouble. Continental Shelf Research, 27: 2224-2230.
Mitchelmore, C.L., A. H. Ringwood and V. M. Weis. (2003). Differential accumulation of cadmium and changes in glutathione levels as a function of symbiotic state in the sea anemone Anthopleura elegantissima. JEMBE. 284: 71-85.
Mitsuguchi T., Matsumoto E., Abe O., Uchida T., and Isdale P.J.(1996) Mg/ Ca thermometry in coral Skeletons. Science 274, 961-963.
Negri, A. P., and A. J. Heyward. (2001). Inhibition of coral fertilization and larval metamorphosis by tributyltin and copper. Mar. Environ. Res. 51(1): 17-27.
Pai. S.C., T. C. Chen and S. T. Liang. (1990). Distribution of dissolved and particulate heavy metals in coastal seawater near Lian-Tong Bay, Northeast of Taiwan. J. Environ. Protec. Soci. ROC. 13(2): 19-37(In Chinese).
Rainbow. P. S. (2002). Trace metal concentrations in aquatic invertebrates: why and so what? Environ. Pollut. 120:497-507.
Reichelt-Brushett A.J. & P.L Harrison, (1998). The effect of copper, zinc and cadmium on fertilization success of gametes from scleractinian reef corals. Marine pollution Bulletin. 38:182-187.
Reichelt-Brushett A.J. & P.L Harrison, (2000). The effect of copper on the settlement success of larvae from the Scleratinian coral Acropora tenuis. Marine pollution Bulletin.41: 385-391.
Rogers, C.S., (1990). Responses of coral reefs and reef organisms to sedimentation. Marine Ecology Progress Series 62: 185-202.
Shen G.T. and Boyle E.A. (1987) Lead in Corals: Reconstruction of historical industrial fluxes to the surface ocean. Earth Planet. Sci lett. 82, 289-304.
Shen, G. T. (1996). Rapid changes in the tropical ocean and the use of corals as monitoring systems. In Geoindicators: Assessing Rapid Environmental Changes in Earth Systems., by A. (Ed.) Berger, : 125-169. Brokfield, Roterdam.
Wang, G.H., A.F. Ahmed, Y.H. Kuo, and J.H. Sheu, (2002). Two New Subergane-Based Sesquiterpenes from a Taiwanese Gorgonian Coral Subergorgia suberosa. Journal of Natural Products, 65(7):1033-1036.
Weilgus, J., Glassam, and L. Fishelson, (2003). Long- term persistence of low coral cover and abundance on a disturbed coral reef flat in northern Red Sea. Journal of Experimental Marine Biology and Ecology, 297: 31-41.
Yang, C. Y. and J. T. Yeh. (1990). Study on the formation of In-Young Sea. J. Environ. Protec. Soci. ROC. 13(1): 2-7.
Yap, H.T. (2007). Coral reef resilience. Marine pollution Bulletin, 54: 1075-1076.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top